中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Data-driven enhanced rough contact mechanics: PINN estimation of gap distribution across length scales for partial contacts

文献类型:期刊论文

作者Zhou, Yunong2; Song HX(宋恒旭)1,3
刊名TRIBOLOGY INTERNATIONAL
出版日期2026-02-01
卷号214页码:7
关键词Contact mechanics Rough surface PINN Gap distribution
ISSN号0301-679X
DOI10.1016/j.triboint.2025.111100
通讯作者Song, Hengxu(songhengxu@imech.ac.cn)
英文摘要In this study, we employ Green's function molecular dynamics (GFMD) to simulate non-adhesive elastic contact between a half-space and a randomly rough counterface in (1+1) dimensions, obtaining gap distributions across varying length scales and Hurst exponents. Using the GFMD-generated dataset and incorporating the convection-diffusion equation form (derived in prior and current work) as a physical constraint, we predict gap distributions via Physics-Informed Neural Network (PINN). Results demonstrate that under partial contact conditions-where analytical solutions are unavailable-PINN predictions assuming drift and diffusion coefficients scale with length exhibit high agreement with GFMD. Furthermore, PINN successfully predicts gap distributions and relative contact areas at larger scales using small-scale training data, closely matching GFMD benchmarks. This establishes PINN as an effective tool for rough surface contact problems, particularly when analytical solutions are absent or computational models are prohibitively expensive.
分类号一类
WOS关键词MOLECULAR-DYNAMICS
资助项目National Natural Science Foundation of China[12402116] ; Natural Science Foundation of Jiangsu Province[BK20220555] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0620101]
WOS研究方向Engineering
语种英语
WOS记录号WOS:001565592500001
资助机构National Natural Science Foundation of China ; Natural Science Foundation of Jiangsu Province ; Strategic Priority Research Program of the Chinese Academy of Sciences
其他责任者宋恒旭
源URL[http://dspace.imech.ac.cn/handle/311007/103716]  
专题力学研究所_非线性力学国家重点实验室
作者单位1.Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China;
2.Yangzhou Univ, Dept Civil Engn, Yangzhou 225127, Jiangsu, Peoples R China;
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Yunong,Song HX. Data-driven enhanced rough contact mechanics: PINN estimation of gap distribution across length scales for partial contacts[J]. TRIBOLOGY INTERNATIONAL,2026,214:7.
APA Zhou, Yunong,&宋恒旭.(2026).Data-driven enhanced rough contact mechanics: PINN estimation of gap distribution across length scales for partial contacts.TRIBOLOGY INTERNATIONAL,214,7.
MLA Zhou, Yunong,et al."Data-driven enhanced rough contact mechanics: PINN estimation of gap distribution across length scales for partial contacts".TRIBOLOGY INTERNATIONAL 214(2026):7.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。