中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An advanced inverse modeling framework for efficient and flexible adjoint-based history matching of geothermal fields

文献类型:期刊论文

作者Tian, Xiaoming1,2; Volkov, Oleg2,3; Voskov, Denis2,3
刊名GEOTHERMICS
出版日期2024
卷号116页码:17
关键词History matching Principal Component Analysis DARTS Adjoint method Geothermal energy
ISSN号0375-6505
DOI10.1016/j.geothermics.2023.102849
通讯作者Voskov, Denis(D.V.Voskov@tudelft.nl)
英文摘要In this study, we present an efficient and flexible adjoint-based framework for history matching and forecasting geothermal energy extraction at a large scale. In this framework, we applied the Principal Component Analysis to reduce the parameter space for representing the complex geological model. The adjoint method is implemented for gradient calculation to speed up the history-matching iteration process. Operator-based linearization (OBL) used in this framework makes the calculation of the physical state and its derivatives very efficient and facilitates the matrix assembly in the adjoint method. This study primarily focuses on history matching based on combined observation of well production and in-situ electromagnetic measurements to predict the temperature front. However, different types of misfit terms can be added to the objective function based on practical considerations. For example, our history-matching case studies include model misfit terms applied for regularization purposes. The measurement data is extracted from the true model, and realistic measurement errors are considered. Also, in this work, we propose an optimal weighting strategy for the terms of the objective function to balance their sensitivity with respect to the model control variables. The high efficiency of the framework is demonstrated for the geothermal doublet model implemented at the heterogeneous reservoir with multiple realizations. The framework allows for generating posterior Randomized Maximum Likelihood (RML) estimates of the entire ensemble of the realizations with a reasonable computational cost. Results show that the framework can achieve reliable history-matching results based on the doublets production data and the reservoir electromagnetic measurement.
WOS关键词PRINCIPAL COMPONENT ANALYSIS ; OPERATOR-BASED LINEARIZATION ; OPTIMAL INJECTION POLICIES ; ENHANCED OIL-RECOVERY ; DIFFERENTIABLE PARAMETERIZATION ; FLOW ; ENSEMBLE ; CONDUCTIVITIES ; TEMPERATURE ; MEDIA
资助项目China Scholarship Council (CSC) ; Stanford Smart Fields Consortium
WOS研究方向Energy & Fuels ; Geology
语种英语
WOS记录号WOS:001101828500001
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构China Scholarship Council (CSC) ; Stanford Smart Fields Consortium
源URL[http://ir.giec.ac.cn/handle/344007/40314]  
专题中国科学院广州能源研究所
通讯作者Voskov, Denis
作者单位1.Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou, Peoples R China
2.Delft Univ Technol, Dept Geosci & Engn, Delft, Netherlands
3.Stanford Univ, Dept Energy Resources Engn, Stanford, CA USA
推荐引用方式
GB/T 7714
Tian, Xiaoming,Volkov, Oleg,Voskov, Denis. An advanced inverse modeling framework for efficient and flexible adjoint-based history matching of geothermal fields[J]. GEOTHERMICS,2024,116:17.
APA Tian, Xiaoming,Volkov, Oleg,&Voskov, Denis.(2024).An advanced inverse modeling framework for efficient and flexible adjoint-based history matching of geothermal fields.GEOTHERMICS,116,17.
MLA Tian, Xiaoming,et al."An advanced inverse modeling framework for efficient and flexible adjoint-based history matching of geothermal fields".GEOTHERMICS 116(2024):17.

入库方式: OAI收割

来源:广州能源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。