中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Lattice Boltzmann Method and Back-Propagation Artificial Neural Network-Based Coke Mapping of Solid Acid Catalyst in Fructose Conversion

文献类型:期刊论文

作者Liu, Siwei4,5,6,7; Wei, Xiangqian3; Liu, Qiying2; Sun, Weitao1; Ma, Longlong3; Chen, Lungang3; Wang, Chenguang5,6,7
刊名ENERGY & FUELS
出版日期2024-05-17
页码17
ISSN号0887-0624
DOI10.1021/acs.energyfuels.4c01410
通讯作者Wang, Chenguang(wangcg@ms.giec.ac.cn)
英文摘要Mapping and understanding humin coking during carbohydrate conversion is crucial for improving solid catalyst systems. However, models for coke mapping are still in need of development. In this study, a lattice Boltzmann method-based back-propagation artificial neural network reduced-order model (ROM) is developed to map the humin distribution during the conversion process. The ROM reveals three configurations of intraparticle coking distribution (surface focus, middle-layer focus, and central focus coking). The experimental feature of surface-focus configuration is the timely decreasing trend in the macroscopic coke accumulation rate, especially under extreme conditions (surface humins/central humins >10). Catalyst load, pellet size, substrate concentration (LSC), and temperature collectively influence the coking configurations. As the temperature increases (100-160 degrees C), the configuration with the highest occupancy in the LSC coordinate space changes from central to middle-layer and finally to surface configuration. Increasing the catalyst loading, reducing the particle size, and lowering the substrate concentration under a threshold number (phi(LSC)) in LSC space helps prevent the catalyst from working under the extreme surface coking configuration status.
WOS关键词PORE-SCALE SIMULATION ; LEVULINIC ACID ; HYDROTHERMAL CARBONIZATION ; LIGNOCELLULOSIC BIOMASS ; MOLECULAR-STRUCTURE ; GLUCOSE CONVERSION ; BRONSTED ACIDS ; FE/HY ZEOLITE ; DECOMPOSITION ; GROWTH
资助项目National Natural Science Foundation of China[52276220] ; National Natural Science Foundation of China[2020B1111570001] ; Key Technologies R&D Program of Guangdong Province
WOS研究方向Energy & Fuels ; Engineering
语种英语
WOS记录号WOS:001227266500001
出版者AMER CHEMICAL SOC
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China ; Key Technologies R&D Program of Guangdong Province
源URL[http://ir.giec.ac.cn/handle/344007/41840]  
专题中国科学院广州能源研究所
通讯作者Wang, Chenguang
作者单位1.Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Lab Basic Res Biomass Convers & Utilizat, Hefei 230026, Peoples R China
2.Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Peoples R China
3.Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Guangdong Key Lab New & Renewable Energy Res & Dev, Guangzhou 510640, Peoples R China
6.Chinese Acad Sci, Key Lab Renewable Energy, Guangzhou 510640, Peoples R China
7.Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China
推荐引用方式
GB/T 7714
Liu, Siwei,Wei, Xiangqian,Liu, Qiying,et al. Lattice Boltzmann Method and Back-Propagation Artificial Neural Network-Based Coke Mapping of Solid Acid Catalyst in Fructose Conversion[J]. ENERGY & FUELS,2024:17.
APA Liu, Siwei.,Wei, Xiangqian.,Liu, Qiying.,Sun, Weitao.,Ma, Longlong.,...&Wang, Chenguang.(2024).Lattice Boltzmann Method and Back-Propagation Artificial Neural Network-Based Coke Mapping of Solid Acid Catalyst in Fructose Conversion.ENERGY & FUELS,17.
MLA Liu, Siwei,et al."Lattice Boltzmann Method and Back-Propagation Artificial Neural Network-Based Coke Mapping of Solid Acid Catalyst in Fructose Conversion".ENERGY & FUELS (2024):17.

入库方式: OAI收割

来源:广州能源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。