Surface hydroxyl groups mediated g-C 3 N 4-Modified perovskite catalytic ozone oxidation interface activation and silicon salt resistance mechanism
文献类型:期刊论文
| 作者 | Wang, Shengzhe2,3,4; Li, Xianru4; Xue, Weiyang4; Gu, Bin4; Han, Peiwei1,3; Yao, Chenxing3,4; Wei, Huangzhao3,4; Sun, Chenglin4 |
| 刊名 | CHEMICAL ENGINEERING JOURNAL
![]() |
| 出版日期 | 2024-06-15 |
| 卷号 | 490页码:10 |
| 关键词 | Water pollution control Ozone catalytic oxidation Surface hydroxyl groups regulating ROS pathways Silicon salt resistance |
| ISSN号 | 1385-8947 |
| DOI | 10.1016/j.cej.2024.151302 |
| 通讯作者 | Wei, Huangzhao(whzhdicpwtg@dicp.ac.cn) ; Sun, Chenglin(clsun@dicp.ac.cn) |
| 英文摘要 | Elucidating the activation mechanisms of ozone at the catalyst interface and enhancing the catalyst ' s resistance to salt are crucial for its practical application. In this study, LaFe 0.26 Mn 0.74 O 3- delta -g-C 3 N 4 (LFMO-CN) perovskite catalysts were prepared for catalytic ozonation treatment of silicon-containing m-cresol wastewater. The LFMO50CN achieved 100 % m-cresol removal and 70.2 % mineralization. Compared to LFMO, the silicon resistance of LFMO-50CN was improved by 2.4 times. The interface regulation of CN promotes the generation of hydroxyl groups on the surface of LFMO-50CN. Density functional theory (DFT) calculation revealed that surface hydroxyl groups regulated reactive oxygen radicals (ROS) generation, reducing the energy barrier for & sdot; OH production. The main pathway for the generation of & sdot; OH was O 3 -> HO 3 & sdot; -> & sdot; OH. Furthermore, LFMO-50CN exhibited excellent stability over 15 cycles. This study systematically investigated the role of surface hydroxyl groups in controlling ozone activation and silicon salt resistance mechanisms, providing insights for catalyst design and application. |
| WOS关键词 | ORGANIC POLLUTANTS ; OZONATION ; WATER ; DEGRADATION ; REMOVAL ; FABRICATION ; RADICALS ; INSIGHT ; COPPER ; MN |
| 资助项目 | Youth Innovation Promotion Associa- tion CAS[2020190] ; National Key R & D Program of China[2023YFE0101000] ; National Key Research and Development Pro- gram of China[2019YFA0705803] ; Science and Technology Projects in Liaoning Province[2021JH2/10300006] |
| WOS研究方向 | Engineering |
| 语种 | 英语 |
| WOS记录号 | WOS:001235605700001 |
| 出版者 | ELSEVIER SCIENCE SA |
| 资助机构 | Youth Innovation Promotion Associa- tion CAS ; National Key R & D Program of China ; National Key Research and Development Pro- gram of China ; Science and Technology Projects in Liaoning Province |
| 源URL | [http://ir.giec.ac.cn/handle/344007/41888] ![]() |
| 专题 | 中国科学院广州能源研究所 |
| 通讯作者 | Wei, Huangzhao; Sun, Chenglin |
| 作者单位 | 1.Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China 2.Natl Univ Singapore, Dept Biomed Engn, 15 Kent Ridge Crescent, Singapore 119276, Singapore 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China |
| 推荐引用方式 GB/T 7714 | Wang, Shengzhe,Li, Xianru,Xue, Weiyang,et al. Surface hydroxyl groups mediated g-C 3 N 4-Modified perovskite catalytic ozone oxidation interface activation and silicon salt resistance mechanism[J]. CHEMICAL ENGINEERING JOURNAL,2024,490:10. |
| APA | Wang, Shengzhe.,Li, Xianru.,Xue, Weiyang.,Gu, Bin.,Han, Peiwei.,...&Sun, Chenglin.(2024).Surface hydroxyl groups mediated g-C 3 N 4-Modified perovskite catalytic ozone oxidation interface activation and silicon salt resistance mechanism.CHEMICAL ENGINEERING JOURNAL,490,10. |
| MLA | Wang, Shengzhe,et al."Surface hydroxyl groups mediated g-C 3 N 4-Modified perovskite catalytic ozone oxidation interface activation and silicon salt resistance mechanism".CHEMICAL ENGINEERING JOURNAL 490(2024):10. |
入库方式: OAI收割
来源:广州能源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

