中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Maximum power point tracking of a photovoltaic energy system using neural fuzzy techniques

文献类型:期刊论文

作者Li CH(李春华) ; Zhu XJ(朱新坚) ; Sui S(隋升) ; Hu WQ(胡万起)
刊名Journal of Shanghai University(English Edition)
出版日期2009
期号01页码:29-36
关键词photovoltaic array boost converter maximum power point tracking(MPPT) neural fuzzy controller(NFC) radial basis function neural networks(RBFNN)
中文摘要In order to improve the output efficiency of a photovoltaic(PV) energy system,the real-time maximum power point(MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller(NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm,the parameters of the NFC are updated adaptively. Experimental results show that,compared with the fuzzy logic control algorithm,the proposed control algorithm provides much better tracking performance.
公开日期2013-12-24
版本出版稿
源URL[http://ir.ipe.ac.cn/handle/122111/6992]  
专题过程工程研究所_研究所(批量导入)
推荐引用方式
GB/T 7714
Li CH,Zhu XJ,Sui S,et al. Maximum power point tracking of a photovoltaic energy system using neural fuzzy techniques[J]. Journal of Shanghai University(English Edition),2009(01):29-36.
APA Li CH,Zhu XJ,Sui S,&Hu WQ.(2009).Maximum power point tracking of a photovoltaic energy system using neural fuzzy techniques.Journal of Shanghai University(English Edition)(01),29-36.
MLA Li CH,et al."Maximum power point tracking of a photovoltaic energy system using neural fuzzy techniques".Journal of Shanghai University(English Edition) .01(2009):29-36.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。