Trace and antitrace maps for aperiodic sequences: Extensions and applications
文献类型:期刊论文
作者 | Wang, XG ; Grimm, U ; Schreiber, M |
刊名 | PHYSICAL REVIEW B
![]() |
出版日期 | 2000 |
卷号 | 62期号:21页码:14020 |
关键词 | GENERALIZED FIBONACCI LATTICES QUASI-PERIODIC MULTILAYERS ONE-DIMENSIONAL QUASICRYSTALS CRITICAL WAVE-FUNCTIONS KRONIG-PENNEY MODEL THUE-MORSE LATTICE TIGHT-BINDING ELECTRONIC-PROPERTIES SPECTRAL PROPERTIES SUBSTITUTION SEQUENCES |
ISSN号 | 0163-1829 |
通讯作者 | Wang, XG (reprint author), Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany. |
中文摘要 | We study aperiodic systems based on substitution rules by means of a transfer-matrix approach. In addition to the well-known trace map, we investigate the so-called "antitrace" map, which is the corresponding map for the difference of the off-diagonal elements of the 2X2 transfer matrix. The antitrace maps are obtained for various binary, ternary, and quaternary aperiodic sequences, such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro sequences, and certain generalizations. For arbitrary substitution rules, we show that not only trace maps, but also antitrace maps exist The dimension of our antitrace map is r(r+1)/2, where r denotes the number of basic letters in the aperiodic sequence. Analogous maps for specific matrix elements of the transfer matrix can also be constructed, but the maps for the off-diagonal elements and for the difference of the diagonal elements coincide with the antitrace map. Thus, from the trace and antitrace map, we Can determine any physical quantity related to the global transfer matrix of the system. As examples, we employ these dynamical maps to compute the transmission coefficients for optical multilayers, harmonic chains, and electronic systems. |
收录类别 | SCI |
语种 | 英语 |
公开日期 | 2013-09-23 |
源URL | [http://ir.iphy.ac.cn/handle/311004/46000] ![]() |
专题 | 物理研究所_物理所公开发表论文_物理所公开发表论文_期刊论文 |
推荐引用方式 GB/T 7714 | Wang, XG,Grimm, U,Schreiber, M. Trace and antitrace maps for aperiodic sequences: Extensions and applications[J]. PHYSICAL REVIEW B,2000,62(21):14020. |
APA | Wang, XG,Grimm, U,&Schreiber, M.(2000).Trace and antitrace maps for aperiodic sequences: Extensions and applications.PHYSICAL REVIEW B,62(21),14020. |
MLA | Wang, XG,et al."Trace and antitrace maps for aperiodic sequences: Extensions and applications".PHYSICAL REVIEW B 62.21(2000):14020. |
入库方式: OAI收割
来源:物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。