中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Trace and antitrace maps for aperiodic sequences: Extensions and applications

文献类型:期刊论文

作者Wang, XG ; Grimm, U ; Schreiber, M
刊名PHYSICAL REVIEW B
出版日期2000
卷号62期号:21页码:14020
关键词GENERALIZED FIBONACCI LATTICES QUASI-PERIODIC MULTILAYERS ONE-DIMENSIONAL QUASICRYSTALS CRITICAL WAVE-FUNCTIONS KRONIG-PENNEY MODEL THUE-MORSE LATTICE TIGHT-BINDING ELECTRONIC-PROPERTIES SPECTRAL PROPERTIES SUBSTITUTION SEQUENCES
ISSN号0163-1829
通讯作者Wang, XG (reprint author), Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany.
中文摘要We study aperiodic systems based on substitution rules by means of a transfer-matrix approach. In addition to the well-known trace map, we investigate the so-called "antitrace" map, which is the corresponding map for the difference of the off-diagonal elements of the 2X2 transfer matrix. The antitrace maps are obtained for various binary, ternary, and quaternary aperiodic sequences, such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro sequences, and certain generalizations. For arbitrary substitution rules, we show that not only trace maps, but also antitrace maps exist The dimension of our antitrace map is r(r+1)/2, where r denotes the number of basic letters in the aperiodic sequence. Analogous maps for specific matrix elements of the transfer matrix can also be constructed, but the maps for the off-diagonal elements and for the difference of the diagonal elements coincide with the antitrace map. Thus, from the trace and antitrace map, we Can determine any physical quantity related to the global transfer matrix of the system. As examples, we employ these dynamical maps to compute the transmission coefficients for optical multilayers, harmonic chains, and electronic systems.
收录类别SCI
语种英语
公开日期2013-09-23
源URL[http://ir.iphy.ac.cn/handle/311004/46000]  
专题物理研究所_物理所公开发表论文_物理所公开发表论文_期刊论文
推荐引用方式
GB/T 7714
Wang, XG,Grimm, U,Schreiber, M. Trace and antitrace maps for aperiodic sequences: Extensions and applications[J]. PHYSICAL REVIEW B,2000,62(21):14020.
APA Wang, XG,Grimm, U,&Schreiber, M.(2000).Trace and antitrace maps for aperiodic sequences: Extensions and applications.PHYSICAL REVIEW B,62(21),14020.
MLA Wang, XG,et al."Trace and antitrace maps for aperiodic sequences: Extensions and applications".PHYSICAL REVIEW B 62.21(2000):14020.

入库方式: OAI收割

来源:物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。