中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method

文献类型:期刊论文

作者Sun, ZH ; Jiang, F
刊名CHINESE PHYSICS B
出版日期2010
卷号19期号:11
关键词SUBUNIT INTERFACES INFORMATION SURFACE CONSERVATION RECOGNITION RESIDUES MODEL
ISSN号1674-1056
通讯作者Jiang, F (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
中文摘要In this paper a new continuous variable called core ratio is defined to describe the probability for a residue to be in a binding site thereby replacing the previous binary description of the interface residue using 0 and 1 So we can use the support vector machine regression method to fit the core ratio value and predict the protein binding sites We also design a new group of physical and chemical descriptors to characterize the binding sites The new descriptors are more effective, with an averaging procedure used Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method
收录类别SCI
资助信息National Natural Science Foundation of China [10674172, 10874229]
语种英语
公开日期2013-09-24
源URL[http://ir.iphy.ac.cn/handle/311004/51225]  
专题物理研究所_物理所公开发表论文_物理所公开发表论文_期刊论文
推荐引用方式
GB/T 7714
Sun, ZH,Jiang, F. Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method[J]. CHINESE PHYSICS B,2010,19(11).
APA Sun, ZH,&Jiang, F.(2010).Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method.CHINESE PHYSICS B,19(11).
MLA Sun, ZH,et al."Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method".CHINESE PHYSICS B 19.11(2010).

入库方式: OAI收割

来源:物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。