Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method
文献类型:期刊论文
作者 | Sun, ZH ; Jiang, F |
刊名 | CHINESE PHYSICS B
![]() |
出版日期 | 2010 |
卷号 | 19期号:11 |
关键词 | SUBUNIT INTERFACES INFORMATION SURFACE CONSERVATION RECOGNITION RESIDUES MODEL |
ISSN号 | 1674-1056 |
通讯作者 | Jiang, F (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. |
中文摘要 | In this paper a new continuous variable called core ratio is defined to describe the probability for a residue to be in a binding site thereby replacing the previous binary description of the interface residue using 0 and 1 So we can use the support vector machine regression method to fit the core ratio value and predict the protein binding sites We also design a new group of physical and chemical descriptors to characterize the binding sites The new descriptors are more effective, with an averaging procedure used Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method |
收录类别 | SCI |
资助信息 | National Natural Science Foundation of China [10674172, 10874229] |
语种 | 英语 |
公开日期 | 2013-09-24 |
源URL | [http://ir.iphy.ac.cn/handle/311004/51225] ![]() |
专题 | 物理研究所_物理所公开发表论文_物理所公开发表论文_期刊论文 |
推荐引用方式 GB/T 7714 | Sun, ZH,Jiang, F. Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method[J]. CHINESE PHYSICS B,2010,19(11). |
APA | Sun, ZH,&Jiang, F.(2010).Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method.CHINESE PHYSICS B,19(11). |
MLA | Sun, ZH,et al."Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method".CHINESE PHYSICS B 19.11(2010). |
入库方式: OAI收割
来源:物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。