On the orbits of magnetized Kepler problems in dimension 2k+1
文献类型:期刊论文
作者 | Bai, ZQ ; Meng, GW ; Wang, EX |
刊名 | JOURNAL OF GEOMETRY AND PHYSICS
![]() |
出版日期 | 2013 |
卷号 | 73页码:260 |
关键词 | MICZ-Kepler orbit Lorentz group Angular momentum Lenz vector |
ISSN号 | 0393-0440 |
通讯作者 | Wang, EX (reprint author), Chinese Acad Sci, Wuhan Inst Phys & Math, Beijing 100864, Peoples R China. |
中文摘要 | It is demonstrated that, for the recently introduced classical magnetized Kepler problems in dimension 2k+1, the non-colliding orbits in the "external configuration space" R2k+1 backslash{0} are all conics; moreover, a conic orbit is an ellipse, a parabola, or a branch of a hyperbola according as the total energy is negative, zero, or positive. It is also demonstrated that the Lie group SO+ (1, 2k + 1) x R+ acts transitively on both the set of oriented elliptic orbits and the set of oriented parabolic orbits. (C) 2013 Elsevier B.V. All rights reserved. |
资助信息 | Hong Kong Research Grants Council under RGC [603110]; Hong Kong University of Science and Technology [DAG S09/10.SC02]; NSF of China [10941002, 11001262]; Starting Fund for Distinguished Young Scholars of Wuhan Institute of Physics and Mathematics [O9S6031001] |
语种 | 英语 |
公开日期 | 2014-01-16 |
源URL | [http://ir.iphy.ac.cn/handle/311004/57284] ![]() |
专题 | 物理研究所_物理所公开发表论文_物理所公开发表论文_期刊论文 |
推荐引用方式 GB/T 7714 | Bai, ZQ,Meng, GW,Wang, EX. On the orbits of magnetized Kepler problems in dimension 2k+1[J]. JOURNAL OF GEOMETRY AND PHYSICS,2013,73:260. |
APA | Bai, ZQ,Meng, GW,&Wang, EX.(2013).On the orbits of magnetized Kepler problems in dimension 2k+1.JOURNAL OF GEOMETRY AND PHYSICS,73,260. |
MLA | Bai, ZQ,et al."On the orbits of magnetized Kepler problems in dimension 2k+1".JOURNAL OF GEOMETRY AND PHYSICS 73(2013):260. |
入库方式: OAI收割
来源:物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。