A Hermite pseudospectral solver for two-dimensional incompressible flows on infinite domains
文献类型:期刊论文
作者 | Yin ZH(尹兆华)![]() |
刊名 | JOURNAL OF COMPUTATIONAL PHYSICS
![]() |
出版日期 | 2014-02-01 |
卷号 | 258页码:371-380 |
通讯作者邮箱 | zhaohua.yin@gmail.com;zhaohua.yin@imech.ac.cn |
关键词 | Hermite functions Spectral methods Navier-Stokes equation |
ISSN号 | 0021-9991 |
产权排序 | [Yin Zaohua] Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100190, Peoples R China |
通讯作者 | Yin, ZH (reprint author), Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, 15 Beisihuanxilu, Beijing 100190, Peoples R China. |
中文摘要 | The Hermite pseudospectral method is applied to solve the Navier-Stokes equations on a two-dimensional infinite domain. The feature of Hermite function allows us to adopt larger time steps than other spectral methods, but also leads to some extra computation when the stream function is calculated from the vorticity field. The scaling factor is employed to increase the resolution within the region of our main interest, and the aliasing error is fully removed by the 2/3-rule. Several traditional numerical experiments are performed with high accuracy, and some related future work on physical applications of this program is also discussed. |
学科主题 | 流体力学 |
分类号 | 一类 |
收录类别 | SCI |
资助信息 | NSF of China [G11172308] |
原文出处 | http://dx.doi.org/10.1016/j.jcp.2013.10.039 |
语种 | 英语 |
WOS记录号 | WOS:000329118500019 |
公开日期 | 2014-02-21 |
源URL | [http://dspace.imech.ac.cn/handle/311007/48253] ![]() |
专题 | 力学研究所_国家微重力实验室 |
推荐引用方式 GB/T 7714 | Yin ZH. A Hermite pseudospectral solver for two-dimensional incompressible flows on infinite domains[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2014,258:371-380. |
APA | 尹兆华.(2014).A Hermite pseudospectral solver for two-dimensional incompressible flows on infinite domains.JOURNAL OF COMPUTATIONAL PHYSICS,258,371-380. |
MLA | 尹兆华."A Hermite pseudospectral solver for two-dimensional incompressible flows on infinite domains".JOURNAL OF COMPUTATIONAL PHYSICS 258(2014):371-380. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。