中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Numerical magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejections acceleration

文献类型:期刊论文

作者Wu, S. T. ; Zhang, T. X. ; Tandberg-Hanssen, E. ; Liu, Y. ; Feng, X. S. ; Tan, A. J.
刊名Solar Physics
出版日期2004
卷号225期号:1页码:157-175
ISSN号0038-0938
关键词2 dynamical types flux rope lasco observations magnetic-fields flares streamer simulation evolution system model
通讯作者北京8701信箱
英文摘要Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Maximum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high initial speed, which remains more or less constant, while slow CMEs start with a low initial speed, but show a gradual acceleration. To explain the difference between the two types of CMEs, Low and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from different physical processes responsible for the destabilization of the coronal magnetic field and for the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes, viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three driving mechanisms either alone or in various combinations. The results show that both fast and slow CMEs can be obtained from an inverse prominence configuration subjected to one or more of these three different initiation processes.
学科主题空间物理
收录类别SCI
原文出处http://www.springerlink.com/content/n32118k5r51326g4/fulltext.pdf
语种英语
源URL[http://ir.cssar.ac.cn/handle/122/1027]  
专题国家空间科学中心_空间科学部
推荐引用方式
GB/T 7714
Wu, S. T.,Zhang, T. X.,Tandberg-Hanssen, E.,et al. Numerical magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejections acceleration[J]. Solar Physics,2004,225(1):157-175.
APA Wu, S. T.,Zhang, T. X.,Tandberg-Hanssen, E.,Liu, Y.,Feng, X. S.,&Tan, A. J..(2004).Numerical magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejections acceleration.Solar Physics,225(1),157-175.
MLA Wu, S. T.,et al."Numerical magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejections acceleration".Solar Physics 225.1(2004):157-175.

入库方式: OAI收割

来源:国家空间科学中心

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。