扭转Alfvén波共振的数学描述
文献类型:期刊论文
作者 | 叶占银 ; 魏奉思 ; 王赤 ; 罗庆宇 ; 冯学尚 |
刊名 | 空间科学学报
![]() |
出版日期 | 2003 |
卷号 | 23期号:4页码:241-247 |
关键词 | 扭转Alfv& #233 n波 共振磁力线 完备正交函数基 冕环 解析解 耗散量 |
ISSN号 | 0254-6124 |
其他题名 | MATHEMATICAL DESCRIPTION OF TORSIONAL ALFVEN WAVE RESONANCE IN CORONAL LOOP |
通讯作者 | 北京8701信箱 |
中文摘要 | 提出完备正交函数基(OFSE)展开方法,求解冕环中无耗散扭转Alfvén波.每个基函数对应冕环中每根磁力线的一个固有角频率ωn,当冕环足点驱动频率等于磁力线的固有频率时,Alfvén波将在这根磁力线处发生共振.采用OFSE方法求解了双足点驱动时冕环Alfvén波的时变演化问题,给出了时变解析解的新形式,其中包含共振项,从共振项可以发现,在共振角频率为ω的共振磁力线附近,在时间t为π/ω的整数倍时,出现占型间断;在t为π/(2ω)的奇数倍时,出现l/x间断.共振磁力线振幅随时间线性增加,增加的斜率正比于Alfvén波速,反比于冕环长度,与驱动频率无关. |
英文摘要 | A method called complete Orthogonal Function Series Expansion (OFSE) in Hilbert space is proposed to solve the non-dissipative torsional Alfven wave in coro-nal loops. Every base function corresponds to an intrinsic angular frequency wn of every magnetic field line in coronal loops. Torsional Alfven wave resonance of a magnetic field line in coronal loops comes out when the driven angular frequency equals to its intrinsic angular frequency. With the method, we present a new form of Torsional Alfven wave evolution solution with two-footpoint driven boundary con-dition. There exists a resonant term in the solution, from which it could be found that: near the resonant place with an angular frequency w, a 8 discontinuity profile appears at times t equal to the multiples of二/。and a 1/x discontinuity profile ap-pears at times t equal to the odd multiples of二/(2w). It is also found that the wave amplitude at resonant place increases linearly with time and the slope is propor-tional to Alfven wave speed, inverse proportional to loop length and independent of driven frequency. |
学科主题 | 空间物理 |
资助信息 | 国家自然科学基金资助项目 |
语种 | 中文 |
源URL | [http://ir.cssar.ac.cn/handle/122/1409] ![]() |
专题 | 国家空间科学中心_空间科学部 |
推荐引用方式 GB/T 7714 | 叶占银,魏奉思,王赤,等. 扭转Alfvén波共振的数学描述[J]. 空间科学学报,2003,23(4):241-247. |
APA | 叶占银,魏奉思,王赤,罗庆宇,&冯学尚.(2003).扭转Alfvén波共振的数学描述.空间科学学报,23(4),241-247. |
MLA | 叶占银,et al."扭转Alfvén波共振的数学描述".空间科学学报 23.4(2003):241-247. |
入库方式: OAI收割
来源:国家空间科学中心
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。