中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases

文献类型:期刊论文

作者Chen, Lingxin1; Fu, Xiuli1,2; Li, Jinhua1
刊名NANOSCALE
出版日期2013
卷号5期号:13页码:5905-5911
关键词LABEL-FREE GOLD NANOPARTICLES CONJUGATED POLYELECTROLYTE GRAPHENE OXIDE SERS ASSAY DYES SPECTROSCOPY SENSITIVITY ADSORPTION
ISSN号2040-3364
产权排序[Chen, Lingxin; Fu, Xiuli; Li, Jinhua] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Zone Environm Proc & Ecol Remedia, Yantai 264003, Peoples R China; [Fu, Xiuli] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
通讯作者Chen, LX (reprint author), Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Zone Environm Proc & Ecol Remedia, Yantai 264003, Peoples R China. lxchen@yic.ac.cn
中文摘要In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and thus decreasing the Raman intensity of 4-MPY, by which the trypsin could be sensed optically. A detection level down to 0.1 ng mL(-1) for trypsin was obtained. The induced accumulation of AgNPs modified with Raman reporter 4-MPY largely enhanced the SERS responses. A good linearity was found within the wide range over five orders of magnitude and reasonable relative standard deviations (between 2.4 and 11.6%) were attained. By using trypsin as a model, the new concept can provide an excellent platform for ultrasensitive SERS measurements of various proteases/enzymes which can lead to nanoparticles stability change through catalyzed hydrolysis toward substrate.
英文摘要In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and thus decreasing the Raman intensity of 4-MPY, by which the trypsin could be sensed optically. A detection level down to 0.1 ng mL(-1) for trypsin was obtained. The induced accumulation of AgNPs modified with Raman reporter 4-MPY largely enhanced the SERS responses. A good linearity was found within the wide range over five orders of magnitude and reasonable relative standard deviations (between 2.4 and 11.6%) were attained. By using trypsin as a model, the new concept can provide an excellent platform for ultrasensitive SERS measurements of various proteases/enzymes which can lead to nanoparticles stability change through catalyzed hydrolysis toward substrate.
学科主题Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
研究领域[WOS]Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
关键词[WOS]LABEL-FREE ; GOLD NANOPARTICLES ; CONJUGATED POLYELECTROLYTE ; GRAPHENE OXIDE ; SERS ; ASSAY ; DYES ; SPECTROSCOPY ; SENSITIVITY ; ADSORPTION
收录类别SCI
资助信息National Natural Science Foundation of China [21275158]; Innovation Projects of the Chinese Academy of Sciences [KZCX2-EW-206]; 100 Talents Program of the Chinese Academy of Sciences
原文出处http://dx.doi.org/10.1039/c3nr00637a
语种英语
WOS记录号WOS:000320398300031
公开日期2014-07-08
源URL[http://ir.yic.ac.cn/handle/133337/6996]  
专题烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室
作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Zone Environm Proc & Ecol Remedia, Yantai 264003, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Chen, Lingxin,Fu, Xiuli,Li, Jinhua. Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases[J]. NANOSCALE,2013,5(13):5905-5911.
APA Chen, Lingxin,Fu, Xiuli,&Li, Jinhua.(2013).Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases.NANOSCALE,5(13),5905-5911.
MLA Chen, Lingxin,et al."Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases".NANOSCALE 5.13(2013):5905-5911.

入库方式: OAI收割

来源:烟台海岸带研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。