中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
改进遗传算法求解VRP问题

文献类型:期刊论文

作者周生伟; 蒋同海; 张荣辉
刊名计算机仿真
出版日期2013
卷号30期号:12页码:140-143,157
关键词车辆路径问题 遗传算法 随机贪婪自适应搜索过程 物流 邻域搜索
ISSN号1006-9348
其他题名Improved Genetic Algorithm for VRP
中文摘要物流配送车辆路径问题(Vehicle Routing Problem,VRP)是一类具有广泛应用的NP-Hard问题,是解决物流配送效率的关键,传统方法寻找最优解的效率低、耗时长,往往找不到满意的解,导致物流成本过高.为了提高VRP寻优效率,降低物流运送成本,对基本遗传算法改进求解VRP问题.首先建立VRP的数学模型,然后基于贪婪随机自适应算法(GreedyRandomized Adaptive Search Procedure,GRASP)改进遗传算法的邻域搜索能力,生成遗传算法初始种群,最后利用遗传算法从GRASP生成的初始种群中找到最优解.计算结果表明,所采用的改进遗传算法可以更好的求解车辆路径问题,有效降低物流运送成本.
英文摘要The vehicle routing problem whose solution is a key to improve efficiency of logistics problem is a classical NP - hard problem,and it is usually difficult for traditional methods to obtain satisfying solutions so as to high logistics costing. In this paper, in order to reduce logistics costs, the hybrid genetic algorithm was selected to solve the VRP problem. This paper established the VRP mathematic model at first. Second, the improvement using Greedy Randomized Adaptive Search Procedure (GRASP) was focused on the local search ability of basic genetic algorithm to generate the initial solution. The genetic algorithm was used to find the best solution from the initial solutions in the end. The calculation result shows that this improved genetic algorithm can solve the vehicle routing problem better than the basic one and reduce logistics costing effectively.
收录类别CSCD
CSCD记录号CSCD:5031010
公开日期2014-11-11
源URL[http://ir.xjipc.cas.cn/handle/365002/3664]  
专题新疆理化技术研究所_多语种信息技术研究室
作者单位中国科学院新疆理化技术研究所;中国科学院大学
推荐引用方式
GB/T 7714
周生伟,蒋同海,张荣辉. 改进遗传算法求解VRP问题[J]. 计算机仿真,2013,30(12):140-143,157.
APA 周生伟,蒋同海,&张荣辉.(2013).改进遗传算法求解VRP问题.计算机仿真,30(12),140-143,157.
MLA 周生伟,et al."改进遗传算法求解VRP问题".计算机仿真 30.12(2013):140-143,157.

入库方式: OAI收割

来源:新疆理化技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。