热门
改进遗传算法求解VRP问题
文献类型:期刊论文
作者 | 周生伟; 蒋同海![]() |
刊名 | 计算机仿真
![]() |
出版日期 | 2013 |
卷号 | 30期号:12页码:140-143,157 |
关键词 | 车辆路径问题 遗传算法 随机贪婪自适应搜索过程 物流 邻域搜索 |
ISSN号 | 1006-9348 |
其他题名 | Improved Genetic Algorithm for VRP |
中文摘要 | 物流配送车辆路径问题(Vehicle Routing Problem,VRP)是一类具有广泛应用的NP-Hard问题,是解决物流配送效率的关键,传统方法寻找最优解的效率低、耗时长,往往找不到满意的解,导致物流成本过高.为了提高VRP寻优效率,降低物流运送成本,对基本遗传算法改进求解VRP问题.首先建立VRP的数学模型,然后基于贪婪随机自适应算法(GreedyRandomized Adaptive Search Procedure,GRASP)改进遗传算法的邻域搜索能力,生成遗传算法初始种群,最后利用遗传算法从GRASP生成的初始种群中找到最优解.计算结果表明,所采用的改进遗传算法可以更好的求解车辆路径问题,有效降低物流运送成本. |
英文摘要 | The vehicle routing problem whose solution is a key to improve efficiency of logistics problem is a classical NP - hard problem,and it is usually difficult for traditional methods to obtain satisfying solutions so as to high logistics costing. In this paper, in order to reduce logistics costs, the hybrid genetic algorithm was selected to solve the VRP problem. This paper established the VRP mathematic model at first. Second, the improvement using Greedy Randomized Adaptive Search Procedure (GRASP) was focused on the local search ability of basic genetic algorithm to generate the initial solution. The genetic algorithm was used to find the best solution from the initial solutions in the end. The calculation result shows that this improved genetic algorithm can solve the vehicle routing problem better than the basic one and reduce logistics costing effectively. |
收录类别 | CSCD |
CSCD记录号 | CSCD:5031010 |
公开日期 | 2014-11-11 |
源URL | [http://ir.xjipc.cas.cn/handle/365002/3664] ![]() |
专题 | 新疆理化技术研究所_多语种信息技术研究室 |
作者单位 | 中国科学院新疆理化技术研究所;中国科学院大学 |
推荐引用方式 GB/T 7714 | 周生伟,蒋同海,张荣辉. 改进遗传算法求解VRP问题[J]. 计算机仿真,2013,30(12):140-143,157. |
APA | 周生伟,蒋同海,&张荣辉.(2013).改进遗传算法求解VRP问题.计算机仿真,30(12),140-143,157. |
MLA | 周生伟,et al."改进遗传算法求解VRP问题".计算机仿真 30.12(2013):140-143,157. |
入库方式: OAI收割
来源:新疆理化技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。