中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Impact of human activity and climate change on suspended sediment load: the upper Yellow River, China

文献类型:SCI/SSCI论文

作者Yao W. Y. ; Xu J. X.
发表日期2013
关键词Upper Yellow River Erosion and sediment yield Variability of runoff and sediment Human activity Climate change water discharge dams erosion runoff trends ocean basin flux
英文摘要Fluvial suspended sediment has multi-fold environmental implications and the study of the variation in suspended sediment load (SSL) of rivers is important both in environmental earth sciences and in river environmental management. Based on data collected for the upper Yellow River of China in the past 50-60 years, the purpose of this study is to elucidate the impact of human activity and climate change on SSL, thereby to provide some knowledge for the improvement of the drainage basin management. The results show that the SSL of the upper Yellow River exhibited a remarkable decreasing trend. A number of reservoirs trapped a considerable amount of sediment, resulting in a reduction in SSL at Toudaoguai station, the most downstream station of the upper Yellow River. The analyses based on Mann-Kendall'U and double-mass plot indicate some turning points, which were caused by the Liujiaxia and Longyangxia Reservoirs, two major reservoirs on the upper Yellow River. The implementation of soil and water conservation measures reduced the runoff coefficient, and therefore, the intensity of soil erosion. The climate change also played a role in reducing sediment yield. The increase in air temperature enhanced the evapo-transpiration and reduced the runoff, by which the SSL decreased. The decreased frequency of sand-dust storms reduced the amount of wind-blown, sand and dust to the river reaches located in desert, also reducing the SSL. Seven influencing variables are selected to describe the changing human activity and climate. As some of the influencing variables are strongly inter-correlated, the principle component regression was used to establish the relationship between SSL and the influencing variables. The squared multiple correlation coefficient is R (2) = 0.823. Some further research is suggested with the minerals and pollutants related with the SSL.
出处Environmental Earth Sciences
70
3
1389-1403
收录类别SCI
语种英语
ISSN号1866-6280
源URL[http://ir.igsnrr.ac.cn/handle/311030/30094]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Yao W. Y.,Xu J. X.. Impact of human activity and climate change on suspended sediment load: the upper Yellow River, China. 2013.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。