Regional scale patterns of fine root lifespan and turnover under current and future climate
文献类型:SCI/SSCI论文
作者 | Mccormack M. L. ; Eissenstat D. M. ; Prasad A. M. ; Smithwick E. A. H. |
发表日期 | 2013 |
关键词 | belowground carbon allocation DISTRIB dynamic global vegetation model (DGVM) ecological modeling minirhizotron tree distribution global vegetation model soil carbon nitrogen availability forest ecosystems primary productivity atmospheric co2 loblolly-pine elevated co2 dynamics mortality |
英文摘要 | Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics make it difficult to define and predict patterns of root dynamics across broad spatial scales. Here, we combine species-specific estimates of fine root dynamics with a model that predicts current distribution and future suitable habitat of temperate tree species across the eastern United States (US). Estimates of fine root lifespan and turnover are based on empirical observations and relationships with fine root and whole-plant traits and apply explicitly to the fine root pool that is relatively short-lived and most active in nutrient and water uptake. Results from the combined model identified patterns of faster root turnover rates in the North Central US and slower turnover rates in the Southeastern US. Portions of Minnesota, Ohio, and Pennsylvania were also predicted to experience >10% increases in root turnover rates given potential shifts in tree species composition under future climate scenarios while root turnover rates in other portions of the eastern US were predicted to decrease. Despite potential regional changes, the average estimates of root lifespan and turnover for the entire study area remained relatively stable between the current and future climate scenarios. Our combined model provides the first empirically based, spatially explicit, and spatially extensive estimates of fine root lifespan and turnover and is a potentially powerful tool allowing researchers to identify reasonable approximations of forest fine root turnover in areas where no direct observations are available. Future efforts should focus on reducing uncertainty in estimates of root dynamics by better understanding how climate and soil factors drive variability in root dynamics of different species. |
出处 | Global Change Biology |
卷 | 19 |
期 | 6 |
页 | 1697-1708 |
收录类别 | SCI |
语种 | 英语 |
ISSN号 | 1354-1013 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/30343] ![]() |
专题 | 地理科学与资源研究所_历年回溯文献 |
推荐引用方式 GB/T 7714 | Mccormack M. L.,Eissenstat D. M.,Prasad A. M.,et al. Regional scale patterns of fine root lifespan and turnover under current and future climate. 2013. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。