中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
江河源区雪灾对畜牧业的影响及畜牧业脆弱性研究

文献类型:学位论文

作者胡海燕
学位类别硕士
答辩日期2014
授予单位中国科学院研究生院
授予地点北京
导师方一平
关键词江河源区 雪灾 畜牧业 脆弱性 适应
其他题名The Impact of the Snow Disaster on the Animal Husbandry and its Vulnerability in the Source Region of Yangtze and Yellow Rivers
学位专业人文地理学
中文摘要近些年来,伴随温室气体排放导致全球升温成为毋庸置疑的事实,脆弱性、适应性相关研究逐渐成为学术界热点,引起广泛的关注。江河源区位于青藏高原腹地,是青藏高原的主体部分,地形复杂,地理环境相对恶劣,但却具有超出其本身意义的生态效益,其生态环境的稳定对我国甚至是全球的气候稳定具有不可忽视的重要意义,但特殊的自然地理条件决定了其适应变化的能力较弱,是对气候变化最为敏感的区域之一。全球气温上升带来的一个最直接的影响便是极端气候事件更加频繁,雪灾便是影响江河源区最常见的自然灾害,不仅严重阻碍了该区域畜牧业的持续发展,亦威胁到我国中下游乃至东南亚国家的水源和生态环境安全。本文以江河源区为研究案例,以雪灾对畜牧业的影响及畜牧业脆弱性评估为主要研究内容,就江河源区自然及社会经济特点、雪灾时空分布、雪灾对畜牧业的影响及畜牧业脆弱性评价等展开讨论。在综合运用气象数据、遥感影像数据、交通数据及社会经济数据的基础上,本文利用相关性分析、数学建模、GIS空间分析等方法就以上内容展开研究。基于本文的分析初步得到以下结论: (i) 考虑雪灾发生的必要气候因子条件,选取10月-次年5月平均日气温小于1?C的低温日数、降雪日数、降雪量、降雪量占全年总降水比重等四项指标,统计出1981-2010年间江河源区18个气象台站及周边若干气象台站逐年数据,探究其时空演变特征,在此基础上合成雪灾综合发生指数,分析其时空演变,并对比基于实际灾情记录的牲畜损亡比重的空间分布图,探究二者之间的契合性。结果显示:雪灾综合发生指数与小于1?C的低温总天数、降雪天数、降雪量及降雪量占全年降水的比重等在空间上保持较高的一致性,存在三大高值区,即源区西北部玉树州治多县与曲麻莱县交界处、玉树州的称多县以及果洛州的玛沁玛多县。而青海湖周边海南、黄南州尤其是海南州的共和、贵德、兴海县为雪灾综合发生指数的低值区。高值区亦是相应的高海拔区,不仅自然环境较为恶劣,交通可通达性亦低,而相应的低值区则海拔较低,自然环境较为优越,路网较为发达,具有较高地理可进入性。从年际变化来看,1997年之前呈波动上升趋势,1997年达到峰值,之后显著下降,并且下降幅度较大,说明进入21世纪之后江河源区牧区遭受雪灾破坏的可能性相较20世纪末有所降低。对比牲畜因雪灾损亡比重的空间分布,二者高值区及低值区的空间分布存在较高程度的契合性。 (ii) 基于相关性分析及回归建模构建的结果显示:在畜牧业中,全社会固定资产投资的增加对畜牧经济起着至关重要的作用,畜牧业中劳动力的投入是影响畜牧业经济产出的次要关键因素,以人均畜牧业产出表征的畜牧业技术进步因素除对肉奶总产量影响作用不显著之外,对畜牧业总产值、年末牲畜出栏及牧民收入的提高均存在较大的促进作用,而畜牧业总产值、肉奶总产量、牧民人均纯收入伴随雪灾综合发生指数值的增加而降低,即雪灾的发生会对畜牧经济产出产生负面效应。相对于资本、人力投入及技术进步,雪灾的作用效应较不显著,说明可以通过增加投资、畜牧业人力投入、普及现代畜牧技术等方式将雪灾对畜牧业的影响降到最低。 (iii) 主要考虑雪灾影响,从暴露性、敏感性及适应性三个角度选取指标对江河源区畜牧业的脆弱性进行评估,结果显示:玉树州西部及果洛州个别县域是脆弱性高值区,江河源区西部包括玉树州的治多、曲麻莱县及唐古拉山镇在内因人口、牲畜分布稀疏、畜牧业经济密度极低,即因畜牧业暴露程度低而成为脆弱性低值区。另外,在经济总体状况较好的地区,如青海湖附近的海南、黄南州虽然牲畜和人口分布较为稠密,但因海拔相对较低,冰雪等灾害性天气少,并且适应能力较强,脆弱性较低。果洛州大部分县域因牲畜密度较低,暴露程度低,加上交通通达性相对西部县域优越,总体上遭受冰雪灾害影响的风险性亦较小。 基于以上研究结果,就畜牧业持续发展得到以下几点启示:第一,加强雪灾监测预警,提供长、中、短期预报。第二,紧抓限畜与增草,缓解草畜矛盾。第三,推进设施畜牧业建设,促进抗灾能力提升。第四,促进二三产业发展,增加牧民收入途径。第五,重视现代畜牧技术推广,提升牧民素质和技能。
英文摘要With the global warming caused by greenhouse gas emission becoming an undoubted fact, more and more scholars concern the studies of vulnerability and adaptability and they gradually become the focus in the academic field in recent years. The source region of Yangtze and Yellow rivers with complex terrain and severe geographical conditions, locating in the interior of Tibetan Plateau and consisting of its main body, has a vitally important ecological benefit and determines the stability of Chinese even the whole world's climate. However, the particular physiographic condition determines the area's poor adaptability and extreme sensitivity to the variations of external environment. One of the direct impacts led by global warming is the more frequent extreme climatic event such as snow disaster. Snow disaster not only seriously hinder the sustainable development of the animal husbandry, but also may threaten the security of the water sources and ecological environment in the middle and lower areas of China as well as most Southeast Asian nations. The paper chooses the source region of Yangtze and Yellow rivers as the study area, and mainly studies the impact of the snow disaster on the animal husbandry and its vulnerability. Based on the meteorological data, the remote sensing data, transportation data and social economic statistic data, using the methods of correlation analysis, mathematical model analysis and GIS spatial analysis, the natural and social economic features, the spatio-temporal characteristics of snow disaster, the impacts of the snow disaster on the animal husbandry and its vulnerability are discussed in the paper. The paper concludes that: (i) Considering the climatic factor leading to snow disaster, the paper chooses the statistic data of the number of cold days with the daily mean temperature lower than 1?C, the number of snowfall days, the amount of snow and the proportion of the snowfall in the whole year's precipitation recorded by the eighteen meteorological stations in the source region of Yangtze and Yellow rivers and some stations around it from the year 1981 to 2010, analyses their spatio-temporal characteristics and then combines them to be a comprehensive snow disaster index. In addition, according to the actual damage record, the spatial distribution of the livestock loss caused by snow disaster is achieved and be seen as a contrast to the spatial distribution of snow disaster index. The results show that: the snow disaster index has a high level of consistency in the spatio-temporal characteristics with the number of cold days, the number of snowfall days, the amount of snow and the proportion of the snowfall in the whole year's precipitation, it has three high value area namely the border of Zhiduo and Qumalai county in the northwest of Yushu autonomous prefecture, Chengduo county in Yushu autonomous prefecture, as well as Maqin and Maduo county in Guoluo autonomous prefecture. However, Hainan and Huangnan autonomous prefecture around the Qinghai Lake especially the Gonghe, Guide and Xinghai county are the low value areas of the snow disaster index. High value areas are always with higher elevation, more severe natural environment and poor transportation, yet the low value areas are with lower elevation, relatively superior natural environment and better road network. From the point of annual variation, the snow disaster index shows a rising trend before 1997, reaches the peak value and then performs an significant declining trend, which indicates that the snow disaster threats have decreased after entering the 21st century. In addition, the snow disaster index has a high level of consistency in the spatial distribution with the livestock loss caused by the snow disaster. (ii) The results of the correlation analysis method and the mathematical models show that fixed assets investment has the most important effect on the animal husbandry outputs, the labor input plays the secondary useful role, the
语种中文
源URL[http://ir.imde.ac.cn/handle/131551/7934]  
专题成都山地灾害与环境研究所_山区发展研究中心
推荐引用方式
GB/T 7714
胡海燕. 江河源区雪灾对畜牧业的影响及畜牧业脆弱性研究[D]. 北京. 中国科学院研究生院. 2014.

入库方式: OAI收割

来源:成都山地灾害与环境研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。