SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces
文献类型:期刊论文
作者 | Yang, Juan1; Ma, Hongtao2; Yamamoto, Yo2; Yu, Jian1; Xu, Guangwen1; Zhang, Zhanguo3; Suzuki, Yoshizo3 |
刊名 | CHEMICAL ENGINEERING JOURNAL
![]() |
出版日期 | 2013-08-15 |
卷号 | 230期号:0页码:513-521 |
关键词 | Coating honeycomb catalyst SCR NO conversion prediction Flue gas Industrial furnace |
英文摘要 | NH3-SCR honeycomb catalyst was prepared by coating powdery active metal components on the surface of blank monolith supports and tested at the temperatures of 250-350 degrees C, and superficial gas velocities of 5.3-6.3 m/s. The tests were performed with a simulated gas mixture containing NO, SO2, O-2, H2O and N-2 or a real flue gas produced on line. The results showed that the coated honeycomb catalyst has an extraordinary high activity for low-temperature deNO(x) in the presence of 5 vol.% steam and 1000 ppm SO2. Its activity increased with increasing the coating thickness and reached at 110 mu m thickness as comparable as that of the 100% active components-molded catalyst, suggesting the deNO(x) reaction proceeded mainly in the surface layers of the honeycomb cell wall and hence coated honeycomb catalyst should be more cost-efficient than 100% active components-molded one. In a real coal-burned flue gas stream the catalyst maintained essentially its low temperature activity and stability, further verifying its high industrial applicability. Then, the effects of NO concentration and NH3/NO ratio on NO conversion were investigated to seek a suitable kinetic model for prediction of the catalyst's deNO(x) rate and reactor design for pilot plant research. The data obtained showed that a simple power-law kinetic equation with first order in NO and zero order in ammonia can be applied to the coated honeycomb catalyst, and was used for determination of the kinetic parameters. Finally, simulation calculation was performed under arbitrary conditions to provide valuable information for design of pilot-plant scale reactors. (C) 2013 Elsevier B.V. All rights reserved. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Engineering, Environmental ; Engineering, Chemical |
研究领域[WOS] | Engineering |
关键词[WOS] | LOW-TEMPERATURE SCR ; V2O5/TIO2 CATALYST ; NITRIC-OXIDE ; REDUCTION ; NH3 ; NOX ; VANADIUM ; AMMONIA ; BEHAVIOR |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000324663100062 |
公开日期 | 2015-05-27 |
源URL | [http://ir.ipe.ac.cn/handle/122111/13580] ![]() |
专题 | 过程工程研究所_研究所(批量导入) |
作者单位 | 1.Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China 2.Meidensha Corp, Res & Dev Grp, Mat Res Labs, Mat Res Dept, Tokyo 1418565, Japan 3.Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058569, Japan |
推荐引用方式 GB/T 7714 | Yang, Juan,Ma, Hongtao,Yamamoto, Yo,et al. SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces[J]. CHEMICAL ENGINEERING JOURNAL,2013,230(0):513-521. |
APA | Yang, Juan.,Ma, Hongtao.,Yamamoto, Yo.,Yu, Jian.,Xu, Guangwen.,...&Suzuki, Yoshizo.(2013).SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces.CHEMICAL ENGINEERING JOURNAL,230(0),513-521. |
MLA | Yang, Juan,et al."SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces".CHEMICAL ENGINEERING JOURNAL 230.0(2013):513-521. |
入库方式: OAI收割
来源:过程工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。