热门
Feature Learning for Image Classification via Multiobjective Genetic Programming
文献类型:期刊论文
作者 | Shao, Ling1,2; Liu, Li2; Li, Xuelong3![]() |
刊名 | ieee transactions on neural networks and learning systems
![]() |
出版日期 | 2014-07-01 |
卷号 | 25期号:7页码:1359-1371 |
关键词 | Feature extraction genetic programming (GP) image classification multiobjective optimization |
ISSN号 | 2162-237x |
英文摘要 | feature extraction is the first and most critical step in image classification. most existing image classification methods use hand-crafted features, which are not adaptive for different image domains. in this paper, we develop an evolutionary learning methodology to automatically generate domain-adaptive global feature descriptors for image classification using multiobjective genetic programming (mogp). in our architecture, a set of primitive 2-d operators are randomly combined to construct feature descriptors through the mogp evolving and then evaluated by two objective fitness criteria, i.e., the classification error and the tree complexity. after the entire evolution procedure finishes, the best-so-far solution selected by the mogp is regarded as the (near-)optimal feature descriptor obtained. to evaluate its performance, the proposed approach is systematically tested on the caltech-101, the mit urban and nature scene, the cmu pie, and jochen triesch static hand posture ii data sets, respectively. experimental results verify that our method significantly outperforms many state-of-the-art hand-designed features and two feature learning techniques in terms of classification accuracy. |
WOS标题词 | science & technology ; technology |
类目[WOS] | computer science, artificial intelligence ; computer science, hardware & architecture ; computer science, theory & methods ; engineering, electrical & electronic |
研究领域[WOS] | computer science ; engineering |
关键词[WOS] | object recognition ; feature-extraction ; scene ; retrieval ; context ; cortex ; shape |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000337906300010 |
公开日期 | 2015-03-18 |
源URL | [http://ir.opt.ac.cn/handle/181661/22385] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.Nanjing Univ Informat Sci & Technol, Coll Elect & Informat Engn, Nanjing 210044, Jiangsu, Peoples R China 2.Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England 3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Shao, Ling,Liu, Li,Li, Xuelong. Feature Learning for Image Classification via Multiobjective Genetic Programming[J]. ieee transactions on neural networks and learning systems,2014,25(7):1359-1371. |
APA | Shao, Ling,Liu, Li,&Li, Xuelong.(2014).Feature Learning for Image Classification via Multiobjective Genetic Programming.ieee transactions on neural networks and learning systems,25(7),1359-1371. |
MLA | Shao, Ling,et al."Feature Learning for Image Classification via Multiobjective Genetic Programming".ieee transactions on neural networks and learning systems 25.7(2014):1359-1371. |
入库方式: OAI收割
来源:西安光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。