GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra
文献类型:期刊论文
作者 | Li, Yanshan1; Liu, Weiming2; Li, Xiaotang3; Huang, Qinghua4; Li, Xuelong5![]() |
刊名 | information sciences
![]() |
出版日期 | 2014-10-10 |
卷号 | 281期号:0页码:559-572 |
关键词 | SIFT Feature extraction Multispectral image Geometric algebra |
ISSN号 | 0020-0255 |
英文摘要 | feature analysis plays an important role in many multispectral image applications and scale invariant feature transform (sift) has been successfully applied for extraction of image features. however, the existing sift algorithms cannot extract features from multispectral images directly. this paper puts forward a novel algorithmic framework based on the sift for multispectral images. firstly, with the theory of the geometric algebra (ga), a new representation of multispectral image including spatial and spectral information is put forward and discussed. secondly, a new method for obtaining the scale space of the multispectral image is proposed. thirdly, following the procedures of the sift, the ga based difference of gaussian images are computed and the keypoints can be detected in the ga space. fourthly, the feature points are finally detected and described in the mathematical framework of the ga. finally, the comparison results show that the ga-sift outperforms some previously reported sift algorithms in the feature extraction from a multispectral image, and it is comparable with its counterparts in the feature extraction of color images, indicating good performance in various applications of image analysis. (c) 2013 elsevier inc. all rights reserved. |
WOS标题词 | science & technology ; technology |
类目[WOS] | computer science, information systems |
研究领域[WOS] | computer science |
关键词[WOS] | discriminant-analysis ; feature-extraction ; clifford algebras ; classification ; descriptors ; recognition ; pca |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000340315600038 |
公开日期 | 2015-03-18 |
源URL | [http://ir.opt.ac.cn/handle/181661/22387] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.Shenzhen Univ, Shenzhen 518060, Peoples R China 2.S China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Guangdong, Peoples R China 3.Harbin Univ Commerce, Harbin, Peoples R China 4.S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Guangdong, Peoples R China 5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Yanshan,Liu, Weiming,Li, Xiaotang,et al. GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra[J]. information sciences,2014,281(0):559-572. |
APA | Li, Yanshan,Liu, Weiming,Li, Xiaotang,Huang, Qinghua,&Li, Xuelong.(2014).GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra.information sciences,281(0),559-572. |
MLA | Li, Yanshan,et al."GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra".information sciences 281.0(2014):559-572. |
入库方式: OAI收割
来源:西安光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。