中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Sparse coding for image denoising using spike and slab prior

文献类型:期刊论文

作者Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun
刊名neurocomputing
出版日期2013-04-15
卷号106页码:12-20
关键词Image denoising Sparse representation Spike and slab prior
英文摘要sparse coding is a challenging and promising theme in image denoising. its main goal is to learn a sparse representation from an over-complete dictionary. how to obtain a better sparse representation from the dictionary is important for the denoising process. in this paper, starting from the classic image denoising problem, a bayesian-based sparse coding algorithm is proposed, which learns sparse representation with the spike and slab prior. using the spike and slab prior, the proposed algorithm can achieve accurate prediction performance and effectively enforce sparsity. experimental results on image denoising have demonstrated that the proposed algorithm can provide better representation and obtain excellent denoising performance. (c) 2012 elsevier b.v. all rights reserved.
WOS标题词science & technology ; technology
类目[WOS]computer science, artificial intelligence
研究领域[WOS]computer science
关键词[WOS]learned dictionaries ; variable selection ; regression ; reconstruction ; algorithms ; domain
收录类别SCI ; EI
语种英语
WOS记录号WOS:000317156200002
公开日期2015-06-30
源URL[http://ir.opt.ac.cn/handle/181661/23478]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位Chinese Acad Sci, Ctr Opt Imagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Yuan, Yuan,Yan, Pingkun. Sparse coding for image denoising using spike and slab prior[J]. neurocomputing,2013,106:12-20.
APA Lu, Xiaoqiang,Yuan, Yuan,&Yan, Pingkun.(2013).Sparse coding for image denoising using spike and slab prior.neurocomputing,106,12-20.
MLA Lu, Xiaoqiang,et al."Sparse coding for image denoising using spike and slab prior".neurocomputing 106(2013):12-20.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。