Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame
文献类型:期刊论文
作者 | Dong, Danan1; Qu, Weijing1,2![]() |
刊名 | GEOPHYSICAL JOURNAL INTERNATIONAL
![]() |
出版日期 | 2014-08-01 |
卷号 | 198期号:2页码:1071-1080 |
关键词 | Time-series analysis Satellite geodesy Reference systems Global change from geodesy |
英文摘要 | The terrestrial reference frame is a cornerstone for modern geodesy and its applications for a wide range of Earth sciences. The underlying assumption for establishing a terrestrial reference frame is that the motion of the solid Earth's figure centre relative to the mass centre of the Earth system on a multidecadal timescale is linear. However, past international terrestrial reference frames (ITRFs) showed unexpected accelerated motion in their translation parameters. Based on this underlying assumption, the inconsistency of relative origin motions of the ITRFs has been attributed to data reduction imperfection. We investigated the impact of surface mass loading from atmosphere, ocean, snow, soil moisture, ice sheet, glacier and sea level from 1983 to 2008 on the geocentre variations. The resultant geocentre time-series display notable trend acceleration from 1998 onward, in particular in the z-component. This effect is primarily driven by the hydrological mass redistribution in the continents (soil moisture, snow, ice sheet and glacier). The acceleration is statistically significant at the 99 per cent confidence level as determined using the Mann-Kendall test, and it is highly correlated with the satellite laser ranging determined translation series. Our study, based on independent geophysical and hydrological models, demonstrates that, in addition to systematic errors from analysis procedures, the observed non-linearity of the Earth-system behaviour at interannual timescales is physically driven and is able to explain 42 per cent of the disparity between the origins of ITRF2000 and ITRF2005, as well as the high level of consistency between the ITRF2005 and ITRF2008 origins. |
WOS标题词 | Science & Technology ; Physical Sciences |
类目[WOS] | Geochemistry & Geophysics |
研究领域[WOS] | Geochemistry & Geophysics |
关键词[WOS] | SEA-LEVEL RISE ; MASS-BALANCE ; ICE-SHEET ; EARTHS OBLATENESS ; SPACE GEODESY ; SURFACE ; MODEL ; OCEAN ; DEFINITION ; GREENLAND |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000339717700028 |
源URL | [http://119.78.226.72/handle/331011/16246] ![]() |
专题 | 上海天文台_天文地球动力学研究中心 |
作者单位 | 1.E China Normal Univ, Shanghai 200062, Peoples R China 2.Chinese Acad Sci, Shanghai Astron Observ, Shanghai, Peoples R China 3.Univ Calif San Diego, Scripps Inst Oceanog, Inst Geophys & Planetary Phys, La Jolla, CA 92093 USA 4.RMIT Univ, Space Res Ctr, Melbourne, Vic, Australia |
推荐引用方式 GB/T 7714 | Dong, Danan,Qu, Weijing,Fang, Peng,et al. Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame[J]. GEOPHYSICAL JOURNAL INTERNATIONAL,2014,198(2):1071-1080. |
APA | Dong, Danan,Qu, Weijing,Fang, Peng,&Peng, Dongju.(2014).Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame.GEOPHYSICAL JOURNAL INTERNATIONAL,198(2),1071-1080. |
MLA | Dong, Danan,et al."Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame".GEOPHYSICAL JOURNAL INTERNATIONAL 198.2(2014):1071-1080. |
入库方式: OAI收割
来源:上海天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。