SOLUTIONS FOR QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL SOBOLEV-HARDY EXPONENTS
文献类型:期刊论文
| 作者 | Zhang, Yimin1; Wang, Youjun2; Shen, Yaotian3 |
| 刊名 | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
![]() |
| 出版日期 | 2011-07-01 |
| 卷号 | 10期号:4页码:1037-1054 |
| 关键词 | Critical Sobolev-Hardy exponents quasilinear Schrodinger equations Orlicz space |
| 产权排序 | 第一 |
| 英文摘要 | By using a change of variable, the quasilinear Schrodinger equation is reduced to semilinear elliptic equation. Then, Mountain Pass theorem without (PS) condition in a suitable Orlicz space is employed to prove the existence of positive standing wave solutions for a class of quasilinear Schrodinger equations involving critical Sobolev-Hardy exponents. |
| WOS标题词 | Science & Technology ; Physical Sciences |
| 学科主题 | 数学 |
| 类目[WOS] | Mathematics, Applied ; Mathematics |
| 研究领域[WOS] | Mathematics |
| 关键词[WOS] | SEMILINEAR ELLIPTIC PROBLEMS ; SOLITON-SOLUTIONS ; R-N ; MULTIPLE SOLUTIONS ; CRITICAL GROWTH ; EXISTENCE |
| 收录类别 | SCI |
| 语种 | 英语 |
| WOS记录号 | WOS:000295085400002 |
| 源URL | [http://ir.wipm.ac.cn/handle/112942/1835] ![]() |
| 专题 | 武汉物理与数学研究所_2011年以前论文发表(包括2011年) |
| 作者单位 | 1.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China 2.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China 3.S China Univ Technol, Dept Math, Guangzhou 510640, Peoples R China |
| 推荐引用方式 GB/T 7714 | Zhang, Yimin,Wang, Youjun,Shen, Yaotian. SOLUTIONS FOR QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL SOBOLEV-HARDY EXPONENTS[J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS,2011,10(4):1037-1054. |
| APA | Zhang, Yimin,Wang, Youjun,&Shen, Yaotian.(2011).SOLUTIONS FOR QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL SOBOLEV-HARDY EXPONENTS.COMMUNICATIONS ON PURE AND APPLIED ANALYSIS,10(4),1037-1054. |
| MLA | Zhang, Yimin,et al."SOLUTIONS FOR QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL SOBOLEV-HARDY EXPONENTS".COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 10.4(2011):1037-1054. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

