Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition
文献类型:期刊论文
作者 | Chen WenXue1,2; Lou HaiYan3,4; Zhang HongPing5; Nie Xiu6; Lan WenXian1; Yang YongXia1; Xiang Yun1; Qi JianPin3; Lei Hao1; Tang HuiRu1 |
刊名 | SCIENCE CHINA-LIFE SCIENCES
![]() |
出版日期 | 2011-07-01 |
卷号 | 54期号:7页码:606-616 |
关键词 | neuroepithelial tumor grade classification high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy metabonomics pattern recognition |
产权排序 | 第一 |
通讯作者 | CHEN WenXue |
英文摘要 | Clinical data have shown that survival rates vary considerably among brain tumor patients, according to the type and grade of the tumor. Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS (1)H NMRS) can provide important information on tumor biology and metabolism. These metabolic fingerprints can then be used for tumor classification and grading, with great potential value for tumor diagnosis. We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies, including two astrocytomas (grade I), 12 astrocytomas (grade II), eight anaplastic astrocytomas (grade III), three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS (1)H NMRS. The results were correlated with pathological features using multivariate data analysis, including principal component analysis (PCA). There were significant differences in the levels of N-acetyl-aspartate (NAA), creatine, myo-inositol, glycine and lactate between tumors of different grades (P < 0.05). There were also significant differences in the ratios of NAA/creatine, lactate/creatine, myo-inositol/creatine, glycine/creatine, scyllo-inositol/creatine and alanine/creatine (P < 0.05). A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%. HRMAS (1)H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades. |
WOS标题词 | Science & Technology ; Life Sciences & Biomedicine |
学科主题 | 波谱分析 |
类目[WOS] | Biology |
研究领域[WOS] | Life Sciences & Biomedicine - Other Topics |
关键词[WOS] | HUMAN BRAIN-TUMORS ; NERVOUS-SYSTEM TUMORS ; H-1 HR-MAS ; H-1-NMR SPECTROSCOPY ; MR SPECTROSCOPY ; IN-VITRO ; CHILDHOOD BRAIN ; TISSUE SAMPLES ; SURVIVAL RATES ; METABOLITES |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000292700100003 |
源URL | [http://ir.wipm.ac.cn/handle/112942/1839] ![]() |
专题 | 武汉物理与数学研究所_2011年以前论文发表(包括2011年) |
作者单位 | 1.Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China 2.Fudan Univ, Dept Chem, Fudan DSM Joint Lab, Shanghai 200433, Peoples R China 3.Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Wuhan 430030, Peoples R China 4.Zhejiang Univ, Coll Med, Affiliated Hosp 1, Hangzhou 310003, Zhejiang, Peoples R China 5.Wuhan Univ, Zhongnan Hosp, Coll Med, Wuhan 430071, Peoples R China 6.Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China |
推荐引用方式 GB/T 7714 | Chen WenXue,Lou HaiYan,Zhang HongPing,et al. Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition[J]. SCIENCE CHINA-LIFE SCIENCES,2011,54(7):606-616. |
APA | Chen WenXue.,Lou HaiYan.,Zhang HongPing.,Nie Xiu.,Lan WenXian.,...&Deng Feng.(2011).Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition.SCIENCE CHINA-LIFE SCIENCES,54(7),606-616. |
MLA | Chen WenXue,et al."Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition".SCIENCE CHINA-LIFE SCIENCES 54.7(2011):606-616. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。