Error Bounds for Uniform Asymptotic Expansions-Modified Bessel Function of Purely Imaginary Order
文献类型:期刊论文
作者 | Shi, Wei1; Wong, Roderick2 |
刊名 | CHINESE ANNALS OF MATHEMATICS SERIES B
![]() |
出版日期 | 2010-09-01 |
卷号 | 31期号:5页码:759-780 |
关键词 | Modified Bessel function of purely imaginary order Airy function Uniform asymptotic expansion Error bound |
产权排序 | 第一 |
英文摘要 | The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals. By using a class of rational functions, they express these quantities in terms of Cauchy-type integrals; these expressions are natural generalizations of integral representations of the coefficients and the remainders in the Taylor expansions of analytic functions. By using the new representation, a computable error bound for the remainder in the uniform asymptotic expansion of the modified Bessel function of purely imaginary order is derived. |
WOS标题词 | Science & Technology ; Physical Sciences |
学科主题 | 非线性偏微分方程 |
类目[WOS] | Mathematics |
研究领域[WOS] | Mathematics |
关键词[WOS] | THIRD KIND ; INTEGRALS |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000282472500011 |
源URL | [http://ir.wipm.ac.cn/handle/112942/2024] ![]() |
专题 | 武汉物理与数学研究所_2011年以前论文发表(包括2011年) |
作者单位 | 1.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China 2.City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Shi, Wei,Wong, Roderick. Error Bounds for Uniform Asymptotic Expansions-Modified Bessel Function of Purely Imaginary Order[J]. CHINESE ANNALS OF MATHEMATICS SERIES B,2010,31(5):759-780. |
APA | Shi, Wei,&Wong, Roderick.(2010).Error Bounds for Uniform Asymptotic Expansions-Modified Bessel Function of Purely Imaginary Order.CHINESE ANNALS OF MATHEMATICS SERIES B,31(5),759-780. |
MLA | Shi, Wei,et al."Error Bounds for Uniform Asymptotic Expansions-Modified Bessel Function of Purely Imaginary Order".CHINESE ANNALS OF MATHEMATICS SERIES B 31.5(2010):759-780. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。