The Cauchy problem for the integrable Novikov equation
文献类型:期刊论文
作者 | Yan, Wei1; Li, Yongsheng2; Zhang, Yimin3 |
刊名 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2012-07-01 |
卷号 | 253期号:1页码:298-318 |
关键词 | Cauchy problem Novikov equation Besov spaces |
英文摘要 | In this paper we consider the Cauchy problem for the integrable Novikov equation. By using the Littlewood-Paley decomposition and nonhomogeneous Besov spaces, we prove that the Cauchy problem for the integrable Novikov equation is locally well-posed in the Besov space B-p.r(s), with 1 <= p, r + infinity and s > max{1 + 1/p, 3/2} In particular, when u(0) is an element of B-p.r(s) boolean AND H-l with 1 <= p, r <= +infinity and s > max{1 + 1/p, 3/2}, for all t is an element of [0, T], we have that vertical bar vertical bar u(t)vertical bar vertical bar H-l = vertical bar vertical bar u(0)vertical bar vertical bar(H)l. We also prove that the local well-posedness of the Cauchy problem for the Novikov equation fails in B-2.(3/2)(infinity). (C) 2012 Elsevier Inc. All rights reserved. |
WOS标题词 | Science & Technology ; Physical Sciences |
类目[WOS] | Mathematics |
研究领域[WOS] | Mathematics |
关键词[WOS] | WELL-POSEDNESS ; BESOV-SPACES |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000303789600012 |
公开日期 | 2015-07-14 |
源URL | [http://ir.wipm.ac.cn/handle/112942/1612] ![]() |
专题 | 武汉物理与数学研究所_数学物理与应用研究部 |
作者单位 | 1.Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China 2.S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China 3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China |
推荐引用方式 GB/T 7714 | Yan, Wei,Li, Yongsheng,Zhang, Yimin. The Cauchy problem for the integrable Novikov equation[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2012,253(1):298-318. |
APA | Yan, Wei,Li, Yongsheng,&Zhang, Yimin.(2012).The Cauchy problem for the integrable Novikov equation.JOURNAL OF DIFFERENTIAL EQUATIONS,253(1),298-318. |
MLA | Yan, Wei,et al."The Cauchy problem for the integrable Novikov equation".JOURNAL OF DIFFERENTIAL EQUATIONS 253.1(2012):298-318. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。