BEST ASYMPTOTIC PROFILE FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA ON QUADRANT
文献类型:期刊论文
作者 | Geng, Shifeng1,2; Wang, Zhen2 |
刊名 | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
![]() |
出版日期 | 2012-03-01 |
卷号 | 11期号:2页码:475-500 |
关键词 | Asymptotic behavior the system of compressible adiabatic flow boundary effect convergence rates |
英文摘要 | We realize the best asymptotic profile for the solutions to the non-isentropic p-system with damping on quadrant is a particular solution of the IBVP for the corresponding nonlinear parabolic equation with special initial data, and we further show the convergence rates to this particular asymptotic profile. This rates are same to that for the isentropic case obtained by H. Ma and M. Mei (J. Differential Equations 249 (2010), 446-484). |
WOS标题词 | Science & Technology ; Physical Sciences |
类目[WOS] | Mathematics, Applied ; Mathematics |
研究领域[WOS] | Mathematics |
关键词[WOS] | NONLINEAR DIFFUSION WAVES ; HYPERBOLIC CONSERVATION-LAWS ; P-SYSTEM ; CONVERGENCE-RATES ; BEHAVIOR |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000299994000005 |
公开日期 | 2015-07-14 |
源URL | [http://ir.wipm.ac.cn/handle/112942/1623] ![]() |
专题 | 武汉物理与数学研究所_数学物理与应用研究部 |
作者单位 | 1.Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China 2.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China |
推荐引用方式 GB/T 7714 | Geng, Shifeng,Wang, Zhen. BEST ASYMPTOTIC PROFILE FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA ON QUADRANT[J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS,2012,11(2):475-500. |
APA | Geng, Shifeng,&Wang, Zhen.(2012).BEST ASYMPTOTIC PROFILE FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA ON QUADRANT.COMMUNICATIONS ON PURE AND APPLIED ANALYSIS,11(2),475-500. |
MLA | Geng, Shifeng,et al."BEST ASYMPTOTIC PROFILE FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA ON QUADRANT".COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 11.2(2012):475-500. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。