中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Invariant measures for interval maps with different one-sided critical orders

文献类型:期刊论文

作者Cui, Hongfei; Ding, Yiming
刊名ERGODIC THEORY AND DYNAMICAL SYSTEMS
出版日期2015-05-01
卷号35页码:835-853
英文摘要For an interval map whose critical point set may contain critical points with different one-sided critical orders and jump discontinuities, under a mild condition on critical orbits, we prove that it has an invariant probability measure which is absolutely continuous with respect to Lebesgue measure by using the methods of Bruin et al [Invent. Math. 172(3) (2008), 509-533], together with ideas from Nowicki and van Strien [Invent. Math. 105(1) (1991), 123-136]. We also show that it admits no wandering intervals.
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Mathematics, Applied ; Mathematics
研究领域[WOS]Mathematics
关键词[WOS]ONE-DIMENSIONAL DYNAMICS ; GROWTH CONDITION ; UNIMODAL MAPS
收录类别SCI
语种英语
WOS记录号WOS:000354330800007
公开日期2015-07-14
源URL[http://ir.wipm.ac.cn/handle/112942/2313]  
专题武汉物理与数学研究所_数学物理与应用研究部
作者单位Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
推荐引用方式
GB/T 7714
Cui, Hongfei,Ding, Yiming. Invariant measures for interval maps with different one-sided critical orders[J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS,2015,35:835-853.
APA Cui, Hongfei,&Ding, Yiming.(2015).Invariant measures for interval maps with different one-sided critical orders.ERGODIC THEORY AND DYNAMICAL SYSTEMS,35,835-853.
MLA Cui, Hongfei,et al."Invariant measures for interval maps with different one-sided critical orders".ERGODIC THEORY AND DYNAMICAL SYSTEMS 35(2015):835-853.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。