Invariant measures for interval maps with different one-sided critical orders
文献类型:期刊论文
作者 | Cui, Hongfei; Ding, Yiming |
刊名 | ERGODIC THEORY AND DYNAMICAL SYSTEMS
![]() |
出版日期 | 2015-05-01 |
卷号 | 35页码:835-853 |
英文摘要 | For an interval map whose critical point set may contain critical points with different one-sided critical orders and jump discontinuities, under a mild condition on critical orbits, we prove that it has an invariant probability measure which is absolutely continuous with respect to Lebesgue measure by using the methods of Bruin et al [Invent. Math. 172(3) (2008), 509-533], together with ideas from Nowicki and van Strien [Invent. Math. 105(1) (1991), 123-136]. We also show that it admits no wandering intervals. |
WOS标题词 | Science & Technology ; Physical Sciences |
类目[WOS] | Mathematics, Applied ; Mathematics |
研究领域[WOS] | Mathematics |
关键词[WOS] | ONE-DIMENSIONAL DYNAMICS ; GROWTH CONDITION ; UNIMODAL MAPS |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000354330800007 |
公开日期 | 2015-07-14 |
源URL | [http://ir.wipm.ac.cn/handle/112942/2313] ![]() |
专题 | 武汉物理与数学研究所_数学物理与应用研究部 |
作者单位 | Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China |
推荐引用方式 GB/T 7714 | Cui, Hongfei,Ding, Yiming. Invariant measures for interval maps with different one-sided critical orders[J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS,2015,35:835-853. |
APA | Cui, Hongfei,&Ding, Yiming.(2015).Invariant measures for interval maps with different one-sided critical orders.ERGODIC THEORY AND DYNAMICAL SYSTEMS,35,835-853. |
MLA | Cui, Hongfei,et al."Invariant measures for interval maps with different one-sided critical orders".ERGODIC THEORY AND DYNAMICAL SYSTEMS 35(2015):835-853. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。