中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations

文献类型:期刊论文

作者Nishihara, K; Yang, T; Zhao, HJ
刊名SIAM JOURNAL ON MATHEMATICAL ANALYSIS
出版日期2004
卷号35期号:6页码:1561-1597
关键词strong rarefaction waves global stability compressible Navier-Stokes equations
英文摘要This paper is concerned with the time-asymptotic behavior toward strong rarefaction waves of solutions to one-dimensional compressible Navier-Stokes equations. Assume that the corresponding Riemann problem to the compressible Euler equations can be solved by rarefaction waves (V-R, U-R, S-R)(t, x). If the initial data (v(0), u(0), s(0))(x) to the nonisentropic compressible Navier-Stokes equations is a small perturbation of an approximate rarefaction wave constructed as in [ S. Kawashima, A. Matsumura, and K. Nishihara, Proc. Japan Acad. Ser. A, 62 (1986), pp. 249-252], then we show that, for the general gas, the Cauchy problem admits a unique global smooth solution (v, u, s)(t, x) which tends to (V-R, U-R, S-R)(t, x) as t tends to infinity. A global stability result can also be established for the nonisentropic ideal polytropic gas, provided that the adiabatic exponent gamma is close to 1. Furthermore, we show that for the isentropic compressible Navier-Stokes equations, the corresponding global stability result holds, provided that the resulting compressible Euler equations are strictly hyperbolic and both characteristical fields are genuinely nonlinear. Here, global stability means that the initial perturbation can be large. Since we do not require the strength of the rarefaction waves to be small, these results give the nonlinear stability of strong rarefaction waves for the one-dimensional compressible Navier-Stokes equations.
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Mathematics, Applied
研究领域[WOS]Mathematics
关键词[WOS]ASYMPTOTIC STABILITY ; CONSERVATION-LAWS ; GAS ; SYSTEM
收录类别SCI
语种英语
WOS记录号WOS:000222457100008
公开日期2015-07-28
源URL[http://ir.wipm.ac.cn/handle/112942/4372]  
专题武汉物理与数学研究所_2011年以前论文发表(包括2011年)
作者单位1.Waseda Univ, Sch Polit Sci & Econ, Tokyo 1698050, Japan
2.City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
推荐引用方式
GB/T 7714
Nishihara, K,Yang, T,Zhao, HJ. Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations[J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS,2004,35(6):1561-1597.
APA Nishihara, K,Yang, T,&Zhao, HJ.(2004).Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations.SIAM JOURNAL ON MATHEMATICAL ANALYSIS,35(6),1561-1597.
MLA Nishihara, K,et al."Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations".SIAM JOURNAL ON MATHEMATICAL ANALYSIS 35.6(2004):1561-1597.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。