Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations
文献类型:期刊论文
作者 | Nishihara, K; Yang, T; Zhao, HJ |
刊名 | SIAM JOURNAL ON MATHEMATICAL ANALYSIS
![]() |
出版日期 | 2004 |
卷号 | 35期号:6页码:1561-1597 |
关键词 | strong rarefaction waves global stability compressible Navier-Stokes equations |
英文摘要 | This paper is concerned with the time-asymptotic behavior toward strong rarefaction waves of solutions to one-dimensional compressible Navier-Stokes equations. Assume that the corresponding Riemann problem to the compressible Euler equations can be solved by rarefaction waves (V-R, U-R, S-R)(t, x). If the initial data (v(0), u(0), s(0))(x) to the nonisentropic compressible Navier-Stokes equations is a small perturbation of an approximate rarefaction wave constructed as in [ S. Kawashima, A. Matsumura, and K. Nishihara, Proc. Japan Acad. Ser. A, 62 (1986), pp. 249-252], then we show that, for the general gas, the Cauchy problem admits a unique global smooth solution (v, u, s)(t, x) which tends to (V-R, U-R, S-R)(t, x) as t tends to infinity. A global stability result can also be established for the nonisentropic ideal polytropic gas, provided that the adiabatic exponent gamma is close to 1. Furthermore, we show that for the isentropic compressible Navier-Stokes equations, the corresponding global stability result holds, provided that the resulting compressible Euler equations are strictly hyperbolic and both characteristical fields are genuinely nonlinear. Here, global stability means that the initial perturbation can be large. Since we do not require the strength of the rarefaction waves to be small, these results give the nonlinear stability of strong rarefaction waves for the one-dimensional compressible Navier-Stokes equations. |
WOS标题词 | Science & Technology ; Physical Sciences |
类目[WOS] | Mathematics, Applied |
研究领域[WOS] | Mathematics |
关键词[WOS] | ASYMPTOTIC STABILITY ; CONSERVATION-LAWS ; GAS ; SYSTEM |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000222457100008 |
公开日期 | 2015-07-28 |
源URL | [http://ir.wipm.ac.cn/handle/112942/4372] ![]() |
专题 | 武汉物理与数学研究所_2011年以前论文发表(包括2011年) |
作者单位 | 1.Waseda Univ, Sch Polit Sci & Econ, Tokyo 1698050, Japan 2.City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China 3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China |
推荐引用方式 GB/T 7714 | Nishihara, K,Yang, T,Zhao, HJ. Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations[J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS,2004,35(6):1561-1597. |
APA | Nishihara, K,Yang, T,&Zhao, HJ.(2004).Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations.SIAM JOURNAL ON MATHEMATICAL ANALYSIS,35(6),1561-1597. |
MLA | Nishihara, K,et al."Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations".SIAM JOURNAL ON MATHEMATICAL ANALYSIS 35.6(2004):1561-1597. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。