Positive solutions for some singular critical growth nonlinear elliptic equations
文献类型:期刊论文
| 作者 | Cao, DM; He, XM; Peng, SJ |
| 刊名 | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
![]() |
| 出版日期 | 2005-02-01 |
| 卷号 | 60期号:3页码:589-609 |
| 关键词 | positive solutions compactness critical Sobolev exponents hardy inequality singular elliptic equation |
| 英文摘要 | Let Omega be a bounded domain in R-N (N greater than or equal to 4) with smooth boundary partial derivativeOmega and the origin 0 is an element of Omega, mu < ((N - 2)/2)(2), 2* = 2N/(N - 2), K(x) is a smooth function on Omega and positive somewhere. We obtain existence results of positive solutions to the Dirichlet problem -Deltau = mu u/\x\(2) + K(x)\u\(2)*(-2)u + f (x, u) on Omega, u = 0 on partial derivativeOmega for various K(x) and suitable number mu. (C) 2004 Elsevier Ltd. All rights reserved. |
| WOS标题词 | Science & Technology ; Physical Sciences |
| 类目[WOS] | Mathematics, Applied ; Mathematics |
| 研究领域[WOS] | Mathematics |
| 关键词[WOS] | CRITICAL SOBOLEV EXPONENTS ; EXTREMAL-FUNCTIONS ; EXISTENCE ; INEQUALITIES |
| 收录类别 | SCI |
| 语种 | 英语 |
| WOS记录号 | WOS:000225679800013 |
| 公开日期 | 2015-07-28 |
| 源URL | [http://ir.wipm.ac.cn/handle/112942/4526] ![]() |
| 专题 | 武汉物理与数学研究所_2011年以前论文发表(包括2011年) |
| 作者单位 | 1.Xiaogan Univ, Dept Math, Xiaogan 432100, Peoples R China 2.Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100080, Peoples R China 3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China |
| 推荐引用方式 GB/T 7714 | Cao, DM,He, XM,Peng, SJ. Positive solutions for some singular critical growth nonlinear elliptic equations[J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,2005,60(3):589-609. |
| APA | Cao, DM,He, XM,&Peng, SJ.(2005).Positive solutions for some singular critical growth nonlinear elliptic equations.NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,60(3),589-609. |
| MLA | Cao, DM,et al."Positive solutions for some singular critical growth nonlinear elliptic equations".NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 60.3(2005):589-609. |
入库方式: OAI收割
来源:武汉物理与数学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

