中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The avalanche dynamics in random nearest neighbor models of evolution with interaction strength

文献类型:期刊论文

作者Jia, W; Fan, WT
刊名ACTA MATHEMATICA SCIENTIA
出版日期2006
卷号26期号:1页码:179-187
关键词BS model interaction strength gap equation avalanche critical exponent
英文摘要A generalized Bak-Sneppen model (BS model) of biological evolution with interaction strength theta is introduced in d-dimensional space, where the "nearest neighbors" are chosen among the 2d neighbors of the extremal site, with the probabilities related to the sizes of the fitnesses. Simulations of one- and two-dimensional models are given. For given theta > 0, the model can self-organize to a critical state, and the critical threshold f(c)(theta) decreases as theta increases. The exact gap equation depending on theta is presented, which reduces to the gap equation of BS model as 0 tends to infinity. An exact equation for the critical exponent gamma(theta) is also obtained. Scaling relations are established among the six critical exponents of the avalanches of the model.
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Mathematics
研究领域[WOS]Mathematics
关键词[WOS]CRITICALITY ; NETWORKS
收录类别SCI
语种英语
WOS记录号WOS:000235984600019
公开日期2015-07-28
源URL[http://ir.wipm.ac.cn/handle/112942/4660]  
专题武汉物理与数学研究所_2011年以前论文发表(包括2011年)
作者单位1.Wuhan Univ, Inst Syst Engn, Wuhan 430072, Peoples R China
2.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
推荐引用方式
GB/T 7714
Jia, W,Fan, WT. The avalanche dynamics in random nearest neighbor models of evolution with interaction strength[J]. ACTA MATHEMATICA SCIENTIA,2006,26(1):179-187.
APA Jia, W,&Fan, WT.(2006).The avalanche dynamics in random nearest neighbor models of evolution with interaction strength.ACTA MATHEMATICA SCIENTIA,26(1),179-187.
MLA Jia, W,et al."The avalanche dynamics in random nearest neighbor models of evolution with interaction strength".ACTA MATHEMATICA SCIENTIA 26.1(2006):179-187.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。