Shotgun Proteomics Analysis of Hibernating Arctic Ground Squirrels
文献类型:期刊论文
作者 | Shao, CX; Liu, YT; Ruan, HQ; Li, Y; Wang, HF; Kohl, F; Goropashnaya, AV; Fedorov, VB; Zeng, R; Barnes, BM |
刊名 | MOLECULAR & CELLULAR PROTEOMICS
![]() |
出版日期 | 2010 |
卷号 | 9期号:2页码:313-326 |
通讯作者 | Yan, J (reprint author), Chinese Acad Sci, German Max Planck Soc, Partner Inst Computat Biol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China.,junyan@picb.ac.cn |
英文摘要 | Mammalian hibernation involves complex mechanisms of metabolic reprogramming and tissue protection. Previous gene expression studies of hibernation have mainly focused on changes at the mRNA level. Large scale proteomics studies on hibernation have lagged behind largely because of the lack of an adequate protein database specific for hibernating species. We constructed a ground squirrel protein database for protein identification and used a label-free shotgun proteomics approach to analyze protein expression throughout the torpor-arousal cycle during hibernation in arctic ground squirrels (Urocitellus parryii). We identified more than 3,000 unique proteins from livers of arctic ground squirrels. Among them, 517 proteins showed significant differential expression comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1-2 months after hibernation had ended (non-hibernating). Consistent with changes at the mRNA level shown in a previous study on the same tissue samples, proteins involved in glycolysis and fatty acid synthesis were significantly under-expressed at the protein level in both late torpid and early aroused animals compared with non-hibernating animals, whereas proteins involved in fatty acid catabolism were significantly overexpressed. On the other hand, when we compared late torpid and early aroused animals, there were discrepancies between mRNA and protein levels for a large number of genes. Proteins involved in protein translation and degradation, mRNA processing, and oxidative phosphorylation were significantly overexpressed in early aroused animals compared with late torpid animals, whereas no significant changes at the mRNA levels between these stages had been observed. Our results suggest that there is substantial post-transcriptional regulation of proteins during torpor-arousal cycles of hibernation. Molecular & Cellular Proteomics 9: 313-326, 2010. |
学科主题 | Biochemistry & Molecular Biology |
类目[WOS] | Biochemical Research Methods |
关键词[WOS] | DIFFERENTIAL GENE-EXPRESSION ; MASS-SPECTROMETRY ; MAMMALIAN HIBERNATION ; PROTEIN IDENTIFICATIONS ; ADAPTIVE-MECHANISMS ; GEL-FREE ; PHENOTYPE ; TORPOR ; CELLS ; MOUSE |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000275506200009 |
版本 | 出版稿 |
源URL | [http://202.127.25.143/handle/331003/960] ![]() |
专题 | 上海生化细胞研究所_上海生科院生化细胞研究所 |
推荐引用方式 GB/T 7714 | Shao, CX,Liu, YT,Ruan, HQ,et al. Shotgun Proteomics Analysis of Hibernating Arctic Ground Squirrels[J]. MOLECULAR & CELLULAR PROTEOMICS,2010,9(2):313-326. |
APA | Shao, CX.,Liu, YT.,Ruan, HQ.,Li, Y.,Wang, HF.,...&Yan, J.(2010).Shotgun Proteomics Analysis of Hibernating Arctic Ground Squirrels.MOLECULAR & CELLULAR PROTEOMICS,9(2),313-326. |
MLA | Shao, CX,et al."Shotgun Proteomics Analysis of Hibernating Arctic Ground Squirrels".MOLECULAR & CELLULAR PROTEOMICS 9.2(2010):313-326. |
入库方式: OAI收割
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。