中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An Explicit Nonlinear Mapping for Manifold Learning

文献类型:期刊论文

作者Qiao, Hong1; Zhang, Peng2; Wang, Di3,4; Zhang, Bo4,5
刊名IEEE TRANSACTIONS ON CYBERNETICS
出版日期2013-02-01
卷号43期号:1页码:51-63
关键词Data mining machine learning manifold learning nonlinear dimensionality reduction (NDR)
英文摘要Manifold learning is a hot research topic in the field of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there are no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have been proposed to get an approximate explicit representation mapping with the assumption that there exists a linear projection between the high-dimensional data samples and their low-dimensional embedding. However, this linearity assumption may be too restrictive. In this paper, an explicit nonlinear mapping is proposed for manifold learning, based on the assumption that there exists a polynomial mapping between the high-dimensional data samples and their low-dimensional representations. As far as we know, this is the first time that an explicit nonlinear mapping for manifold learning is given. In particular, we apply this to the method of locally linear embedding and derive an explicit nonlinear manifold learning algorithm, which is named neighborhood preserving polynomial embedding. Experimental results on both synthetic and real-world data show that the proposed mapping is much more effective in preserving the local neighborhood information and the nonlinear geometry of the high-dimensional data samples than previous work.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
研究领域[WOS]Computer Science
关键词[WOS]NEIGHBORHOOD PRESERVING PROJECTIONS ; DIMENSIONALITY REDUCTION ; GEOMETRIC FRAMEWORK ; FACE RECOGNITION ; DYNAMIC SHAPE ; LAPLACIANFACES ; EXTRAPOLATION ; EIGENMAPS ; ALIGNMENT ; EXAMPLES
收录类别SCI
语种英语
WOS记录号WOS:000317643500005
源URL[http://ir.ia.ac.cn/handle/173211/3029]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Natl Disaster Reduct Ctr China, Ctr Data, Beijing 100124, Peoples R China
3.Chinese Acad Sci, Grad Sch, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
5.Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Qiao, Hong,Zhang, Peng,Wang, Di,et al. An Explicit Nonlinear Mapping for Manifold Learning[J]. IEEE TRANSACTIONS ON CYBERNETICS,2013,43(1):51-63.
APA Qiao, Hong,Zhang, Peng,Wang, Di,&Zhang, Bo.(2013).An Explicit Nonlinear Mapping for Manifold Learning.IEEE TRANSACTIONS ON CYBERNETICS,43(1),51-63.
MLA Qiao, Hong,et al."An Explicit Nonlinear Mapping for Manifold Learning".IEEE TRANSACTIONS ON CYBERNETICS 43.1(2013):51-63.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。