中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Principal component analysis based on non-parametric maximum entropy

文献类型:期刊论文

作者He, Ran1; Hu, Baogang2; Yuan, XiaoTong3; Zheng, Wei-Shi4; Baogang Hu; Ran He(赫然)
刊名NEUROCOMPUTING
出版日期2010-06-01
卷号73期号:10-12页码:1840-1852
关键词PCA Entropy Subspace learning Information theoretic learning
英文摘要In this paper, we propose an improved principal component analysis based on maximum entropy (MaxEnt) preservation, called MaxEnt-PCA, which is derived from a Parzen window estimation of Renyi's quadratic entropy. Instead of minimizing the reconstruction error either based on L-2-norm or L-1-norm, the MaxEnt-PCA attempts to preserve as much as possible the uncertainty information of the data measured by entropy. The optimal solution of MaxEnt-PCA consists of the eigenvectors of a Laplacian probability matrix corresponding to the MaxEnt distribution. MaxEnt-PCA (1) is rotation invariant, (2) is free from any distribution assumption, and (3) is robust to outliers. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed linear method as compared to other related robust PCA methods. (C) 2010 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]KERNEL EIGENVALUE PROBLEM ; RECOGNITION ; PCA ; EIGENFACES ; EXTRACTION ; ALGORITHM ; EXTENSION ; L1-NORM ; POINTS
收录类别SCI
语种英语
WOS记录号WOS:000279134100034
源URL[http://ir.ia.ac.cn/handle/173211/2811]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
作者单位1.Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China
2.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
3.Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
4.Queen Mary Univ London, Dept Comp Sci, London, England
推荐引用方式
GB/T 7714
He, Ran,Hu, Baogang,Yuan, XiaoTong,et al. Principal component analysis based on non-parametric maximum entropy[J]. NEUROCOMPUTING,2010,73(10-12):1840-1852.
APA He, Ran,Hu, Baogang,Yuan, XiaoTong,Zheng, Wei-Shi,Baogang Hu,&Ran He.(2010).Principal component analysis based on non-parametric maximum entropy.NEUROCOMPUTING,73(10-12),1840-1852.
MLA He, Ran,et al."Principal component analysis based on non-parametric maximum entropy".NEUROCOMPUTING 73.10-12(2010):1840-1852.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。