中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust Principal Component Analysis Based on Maximum Correntropy Criterion

文献类型:期刊论文

作者He, Ran1; Hu, Bao-Gang1; Zheng, Wei-Shi2; Kong, Xiang-Wei3; Ran He(赫然); Baogang Hu
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2011-06-01
卷号20期号:6页码:1485-1494
关键词Correntropy half-quadratic optimization principal component analysis (PCA) robust
英文摘要Principal component analysis (PCA) minimizes the mean square error (MSE) and is sensitive to outliers. In this paper, we present a new rotational-invariant PCA based on maximum correntropy criterion (MCC). A half-quadratic optimization algorithm is adopted to compute the correntropy objective. At each iteration, the complex optimization problem is reduced to a quadratic problem that can be efficiently solved by a standard optimization method. The proposed method exhibits the following benefits: 1) it is robust to outliers through the mechanism of MCC which can be more theoretically solid than a heuristic rule based on MSE; 2) it requires no assumption about the zero-mean of data for processing and can estimate data mean during optimization; and 3) its optimal solution consists of principal eigenvectors of a robust covariance matrix corresponding to the largest eigen-values. In addition, kernel techniques are further introduced in the proposed method to deal with nonlinearly distributed data. Numerical results demonstrate that the proposed method can outperform robust rotational-invariant PCAs based on norm when outliers occur.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
研究领域[WOS]Computer Science ; Engineering
关键词[WOS]FACE RECOGNITION ; SIGNAL ; IMAGE
收录类别SCI
语种英语
WOS记录号WOS:000290732600002
源URL[http://ir.ia.ac.cn/handle/173211/2813]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
自动化研究所_智能感知与计算研究中心
离退休人员
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China
3.Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China
推荐引用方式
GB/T 7714
He, Ran,Hu, Bao-Gang,Zheng, Wei-Shi,et al. Robust Principal Component Analysis Based on Maximum Correntropy Criterion[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2011,20(6):1485-1494.
APA He, Ran,Hu, Bao-Gang,Zheng, Wei-Shi,Kong, Xiang-Wei,Ran He,&Baogang Hu.(2011).Robust Principal Component Analysis Based on Maximum Correntropy Criterion.IEEE TRANSACTIONS ON IMAGE PROCESSING,20(6),1485-1494.
MLA He, Ran,et al."Robust Principal Component Analysis Based on Maximum Correntropy Criterion".IEEE TRANSACTIONS ON IMAGE PROCESSING 20.6(2011):1485-1494.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。