Mining Semantic Context Information for Intelligent Video Surveillance of Traffic Scenes
文献类型:期刊论文
作者 | Zhang, Tianzhu1,2![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
![]() |
出版日期 | 2013-02-01 |
卷号 | 9期号:1页码:149-160 |
关键词 | Event detection Gaussian mixture model (GMM) and graph cut object classification object detection object tracking video surveillance |
英文摘要 | Automated visual surveillance systems are attracting extensive interest due to public security. In this paper, we attempt to mine semantic context information including object-specific context information and scene-specific context information (learned from object-specific context information) to build an intelligent system with robust object detection, tracking, and classification and abnormal event detection. By means of object-specific context information, a cotrained classifier, which takes advantage of the multiview information of objects and reduces the number of labeling training samples, is learned to classify objects into pedestrians or vehicles with high object classification performance. For each kind of object, we learn its corresponding semantic scene-specific context information: motion pattern, width distribution, paths, and entry/exist points. Based on this information, it is efficient to improve object detection and tracking and abnormal event detection. Experimental results demonstrate the effectiveness of our semantic context features for multiple real-world traffic scenes. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial |
研究领域[WOS] | Automation & Control Systems ; Computer Science ; Engineering |
关键词[WOS] | VISUAL SURVEILLANCE ; FACE DETECTION ; GRAPH CUTS ; OPTIMIZATION ; RECOGNITION ; PATTERNS ; TRACKING |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000312839600015 |
源URL | [http://ir.ia.ac.cn/handle/173211/2842] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 2.China Singapore Inst Digital Media, Singapore 119613, Singapore |
推荐引用方式 GB/T 7714 | Zhang, Tianzhu,Liu, Si,Xu, Changsheng,et al. Mining Semantic Context Information for Intelligent Video Surveillance of Traffic Scenes[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2013,9(1):149-160. |
APA | Zhang, Tianzhu,Liu, Si,Xu, Changsheng,&Lu, Hanqing.(2013).Mining Semantic Context Information for Intelligent Video Surveillance of Traffic Scenes.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,9(1),149-160. |
MLA | Zhang, Tianzhu,et al."Mining Semantic Context Information for Intelligent Video Surveillance of Traffic Scenes".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 9.1(2013):149-160. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。