中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Determining structural identifiability of parameter learning machines

文献类型:期刊论文

作者Ran, Zhi-Yong; Hu, Bao-Gang
刊名NEUROCOMPUTING
出版日期2014-03-15
卷号127页码:88-97
关键词Identifiability Parameter learning machine Exhaustive summary Kullback-Leibler divergence Parameter redundancy
英文摘要This paper reports an extension of our previous study on determining structural identifiability of the generalized constraint (GC) models, which are considered to be parameter learning machines. Identifiability defines a uniqueness property to the model parameters. This property is particularly important for those physically interpretable parameters in GC models. We derive identifiability criteria according to the types of models. First, by taking the models as a family of deterministic nonlinear transformations from input space to output space, we provide a criterion for examining identifiability of the Multiple-input Multiple-output (MIMO) models. This result therefore generalizes the previous one for Single-input Single-output (SISO) and Multiple-input Single-output (MISO) models. Second, if considering the models as the mean functions of input-dependent conditional distributions within stochastic framework, we derive an identifiability criterion by means of the Kullback-Leibler divergence (KLD) and regular summary. Third, time-variant models are studied based on the exhaustive summary method. The new identifiability criterion is valid for a range of differential/difference equation models whenever their exhaustive summaries can be obtained. Several model examples from the literature are presented to examine their identifiability property. (C) 2013 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]GLOBAL IDENTIFIABILITY ; COMPARTMENTAL-MODELS ; PARAMETRIZATIONS ; IDENTIFICATION ; DYNAMICS ; GEOMETRY ; SYSTEMS ; DRIVEN
收录类别SCI
语种英语
WOS记录号WOS:000329603100010
源URL[http://ir.ia.ac.cn/handle/173211/2874]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
作者单位Chinese Acad Sci, Inst Automat, NLPR&LIAMA, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Ran, Zhi-Yong,Hu, Bao-Gang. Determining structural identifiability of parameter learning machines[J]. NEUROCOMPUTING,2014,127:88-97.
APA Ran, Zhi-Yong,&Hu, Bao-Gang.(2014).Determining structural identifiability of parameter learning machines.NEUROCOMPUTING,127,88-97.
MLA Ran, Zhi-Yong,et al."Determining structural identifiability of parameter learning machines".NEUROCOMPUTING 127(2014):88-97.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。