Image annotation using high order statistics in non-Euclidean spaces
文献类型:期刊论文
作者 | Zhu, Songhao1; Hu, Juanjuan1; Wang, Baoyun1; Shen, Shuhan2![]() |
刊名 | JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
![]() |
出版日期 | 2013-11-01 |
卷号 | 24期号:8页码:1342-1348 |
关键词 | Dissimilarity diffusion distribution High-order statistics Maximum a posteriori Gaussian Mixture Model Non-Euclidean space Image annotation Corel database Experimentation |
英文摘要 | Automatic image annotation is a promising way to achieve more effective image retrieval and image analysis by using keywords associated to the image content. Due to the semantic gap between low-level visual features and high-level semantic concepts of an image, however, the performances of many existing algorithms are not so satisfactory. In this paper, a novel image classification scheme, named high order statistics based maximum a posterior (HOS-MAP), is proposed to deal with the issue of image annotation. To bridge the gap between human judgment and machine intelligence, the proposed scheme first constructs a dissimilarity representation for each image in a non-Euclidean space; then, the information of dissimilarity diffusion distribution for each image is achieved with respect to the high-order statistics of a triplet of nearest neighbor images; finally, a maximum a posteriori algorithm with the information of Gaussian Mixture Model and dissimilarity diffusion distribution is adopted to estimate the relevance between each annotation and an input un-annotated image. Experimental results on a general-purpose image database demonstrate the effectiveness and efficiency of the proposed automatic image annotation scheme. (C) 2013 Elsevier Inc. All rights reserved. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Information Systems ; Computer Science, Software Engineering |
研究领域[WOS] | Computer Science |
关键词[WOS] | RECOGNITION |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000328590700011 |
源URL | [http://ir.ia.ac.cn/handle/173211/2989] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
作者单位 | 1.Nanjing Univ Posts & Telecommun, Sch Automat, Nanjing 210046, Jiangsu, Peoples R China 2.Chinese Acad Sci, Inst Automat, Beijing 110093, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Songhao,Hu, Juanjuan,Wang, Baoyun,et al. Image annotation using high order statistics in non-Euclidean spaces[J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,2013,24(8):1342-1348. |
APA | Zhu, Songhao,Hu, Juanjuan,Wang, Baoyun,&Shen, Shuhan.(2013).Image annotation using high order statistics in non-Euclidean spaces.JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,24(8),1342-1348. |
MLA | Zhu, Songhao,et al."Image annotation using high order statistics in non-Euclidean spaces".JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 24.8(2013):1342-1348. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。