中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
Dense Trajectories and Motion Boundary Descriptors for Action Recognition

文献类型:期刊论文

作者Wang, Heng1; Klaeser, Alexander2; Schmid, Cordelia2; Liu, Cheng-Lin1
刊名INTERNATIONAL JOURNAL OF COMPUTER VISION
出版日期2013-05-01
卷号103期号:1页码:60-79
关键词Action recognition Dense trajectories Motion boundary histograms
英文摘要This paper introduces a video representation based on dense trajectories and motion boundary descriptors. Trajectories capture the local motion information of the video. A dense representation guarantees a good coverage of foreground motion as well as of the surrounding context. A state-of-the-art optical flow algorithm enables a robust and efficient extraction of dense trajectories. As descriptors we extract features aligned with the trajectories to characterize shape (point coordinates), appearance (histograms of oriented gradients) and motion (histograms of optical flow). Additionally, we introduce a descriptor based on motion boundary histograms (MBH) which rely on differential optical flow. The MBH descriptor shows to consistently outperform other state-of-the-art descriptors, in particular on real-world videos that contain a significant amount of camera motion. We evaluate our video representation in the context of action classification on nine datasets, namely KTH, YouTube, Hollywood2, UCF sports, IXMAS, UIUC, Olympic Sports, UCF50 and HMDB51. On all datasets our approach outperforms current state-of-the-art results.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]OBJECT TRAJECTORIES ; FEATURES ; VIDEO ; CLASSIFICATION ; TEXTURE ; SCALE
收录类别SCI
语种英语
WOS记录号WOS:000318413500003
源URL[http://ir.ia.ac.cn/handle/173211/3075]  
专题自动化研究所_模式识别国家重点实验室_模式分析与学习团队
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
2.INRIA Grenoble Rhone Alpes, LEAR Team, F-38330 Montbonnot St Martin, France
推荐引用方式
GB/T 7714
Wang, Heng,Klaeser, Alexander,Schmid, Cordelia,et al. Dense Trajectories and Motion Boundary Descriptors for Action Recognition[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2013,103(1):60-79.
APA Wang, Heng,Klaeser, Alexander,Schmid, Cordelia,&Liu, Cheng-Lin.(2013).Dense Trajectories and Motion Boundary Descriptors for Action Recognition.INTERNATIONAL JOURNAL OF COMPUTER VISION,103(1),60-79.
MLA Wang, Heng,et al."Dense Trajectories and Motion Boundary Descriptors for Action Recognition".INTERNATIONAL JOURNAL OF COMPUTER VISION 103.1(2013):60-79.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。