中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Hierarchical Remote Sensing Image Analysis via Graph Laplacian Energy

文献类型:期刊论文

作者Zhang Huigang1; Bai Xiao1; Zheng Huaxin2; Zhao Huijie2; Zhou Jun3; Cheng Jian4; Lu Hanqing4
刊名IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
出版日期2013-03-01
卷号10期号:2页码:396-400
关键词Classification graph Laplacian energy (LE) high-resolution imagery local self-similarity (LSS)
英文摘要Segmentation and classification are important tasks in remote sensing image analysis. Recent research shows that images can be described in hierarchical structure or regions. Such hierarchies can produce the state-of-the-art segmentations and can be used in the classification. However, they often contain more levels and regions than required for an efficient image description, which may cause increased computational complexity. In this letter, we propose a new hierarchical segmentation method that applies graph Laplacian energy as a generic measure for segmentation. It reduces the redundancy in the hierarchy by an order of magnitude with little or no loss of performance. In the classification stage, we apply local self-similarity feature to capture the internal geometric layouts of regions in an image. By incorporating advantages from both semantic hierarchical segmentation and local geometric region description, we have achieved better performance than those from the methods being compared. In the experimental section, we validate the effectiveness of our method by showing results on QuickBird and GeoEye-1 image data sets.
WOS标题词Science & Technology ; Physical Sciences ; Technology
类目[WOS]Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
研究领域[WOS]Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
关键词[WOS]CLASSIFICATION ; SEGMENTATION ; FEATURES
收录类别SCI
语种英语
WOS记录号WOS:000310901600039
源URL[http://ir.ia.ac.cn/handle/173211/3338]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
作者单位1.Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
2.Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100191, Peoples R China
3.Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
4.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang Huigang,Bai Xiao,Zheng Huaxin,et al. Hierarchical Remote Sensing Image Analysis via Graph Laplacian Energy[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2013,10(2):396-400.
APA Zhang Huigang.,Bai Xiao.,Zheng Huaxin.,Zhao Huijie.,Zhou Jun.,...&Lu Hanqing.(2013).Hierarchical Remote Sensing Image Analysis via Graph Laplacian Energy.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,10(2),396-400.
MLA Zhang Huigang,et al."Hierarchical Remote Sensing Image Analysis via Graph Laplacian Energy".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 10.2(2013):396-400.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。