中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Enhanced Biologically Inspired Model for Object Recognition

文献类型:期刊论文

作者Huang, Yongzhen1; Huang, Kaiqi1; Tao, Dacheng2; Tan, Tieniu1; Li, Xuelong3
刊名IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS
出版日期2011-12-01
卷号41期号:6页码:1668-1680
关键词Biologically inspired model (BIM) feedback object recognition sparseness
英文摘要The biologically inspired model (BIM) proposed by Serre et al. presents a promising solution to object categorization. It emulates the process of object recognition in primates' visual cortex by constructing a set of scale- and position-tolerant features whose properties are similar to those of the cells along the ventral stream of visual cortex. However, BIM has potential to be further improved in two aspects: mismatch by dense input and randomly feature selection due to the feedforward framework. To solve or alleviate these limitations, we develop an enhanced BIM (EBIM) in terms of the following two aspects: 1) removing uninformative inputs by imposing sparsity constraints, 2) apply a feedback loop to middle level feature selection. Each aspect is motivated by relevant psychophysical research findings. To show the effectiveness of the EBIM, we apply it to object categorization and conduct empirical studies on four computer vision data sets. Experimental results demonstrate that the EBIM outperforms the BIM and is comparable to state-of-the-art approaches in terms of accuracy. Moreover, the new system is about 20 times faster than the BIM.
WOS标题词Science & Technology ; Technology
类目[WOS]Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
研究领域[WOS]Automation & Control Systems ; Computer Science
关键词[WOS]VISUAL-SYSTEM ; CORTEX ; RETRIEVAL ; FEATURES ; SCALE ; CLASSIFICATION ; SURVEILLANCE ; HISTOGRAMS ; REGIONS ; SPEED
收录类别SCI ; SSCI
语种英语
WOS记录号WOS:000297342100018
源URL[http://ir.ia.ac.cn/handle/173211/3771]  
专题自动化研究所_智能感知与计算研究中心
作者单位1.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.Univ Technol Sydney, Ctr Quantum Computat & Informat Syst, Sydney, NSW 2007, Australia
3.Chinese Acad Sci, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Huang, Yongzhen,Huang, Kaiqi,Tao, Dacheng,et al. Enhanced Biologically Inspired Model for Object Recognition[J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,2011,41(6):1668-1680.
APA Huang, Yongzhen,Huang, Kaiqi,Tao, Dacheng,Tan, Tieniu,&Li, Xuelong.(2011).Enhanced Biologically Inspired Model for Object Recognition.IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,41(6),1668-1680.
MLA Huang, Yongzhen,et al."Enhanced Biologically Inspired Model for Object Recognition".IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 41.6(2011):1668-1680.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。