中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive pyramid mean shift for global real-time visual tracking

文献类型:期刊论文

作者Li, Shu-Xiao; Chang, Hong-Xing; Zhu, Cheng-Fei
刊名IMAGE AND VISION COMPUTING
出版日期2010-03-01
卷号28期号:3页码:424-437
关键词Global visual tracking Fast mean shift Adaptive level Kernel-based tracking Tracking and pointing subsystem
英文摘要Tracking objects in videos using the mean shift technique has attracted considerable attention. In this work, a novel approach for global target tracking based on mean shift technique is proposed. The proposed method represents the model and the candidate in terms of background weighted histogram and color weighted histogram, respectively, which can obtain precise object size adaptively with low computational complexity. To track targets whose displacements between two successive frames are relatively large, we implement the mean shift procedure via a coarse-to-fine way for global maximum seeking. This procedure is termed as adaptive pyramid mean shift, because it uses the pyramid analysis technique and can determine the pyramid level adaptively to decrease the number of iterations required to achieve convergence. Experimental results on various tracking videos and its application to a tracking and pointing subsystem show that the proposed method can successfully cope with different situations such as camera motion, camera vibration, camera zoom and focus, high-speed moving object tracking, partial occlusions, target scale variations, etc. (C) 2009 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology ; Physical Sciences
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Optics
研究领域[WOS]Computer Science ; Engineering ; Optics
关键词[WOS]OBJECT TRACKING ; PARTICLE FILTER ; MODE SEEKING ; FEATURES ; COLOR ; SURVEILLANCE ; KERNELS
收录类别SCI
语种英语
WOS记录号WOS:000273103300013
源URL[http://ir.ia.ac.cn/handle/173211/4141]  
专题自动化研究所_综合信息系统研究中心
作者单位Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Shu-Xiao,Chang, Hong-Xing,Zhu, Cheng-Fei. Adaptive pyramid mean shift for global real-time visual tracking[J]. IMAGE AND VISION COMPUTING,2010,28(3):424-437.
APA Li, Shu-Xiao,Chang, Hong-Xing,&Zhu, Cheng-Fei.(2010).Adaptive pyramid mean shift for global real-time visual tracking.IMAGE AND VISION COMPUTING,28(3),424-437.
MLA Li, Shu-Xiao,et al."Adaptive pyramid mean shift for global real-time visual tracking".IMAGE AND VISION COMPUTING 28.3(2010):424-437.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。