中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
图象分割技术研究

文献类型:学位论文

作者杨发国
学位类别工学博士
答辩日期2003-06-01
授予单位中国科学院研究生院
授予地点中国科学院自动化研究所
导师蒋田仔
关键词图象分割 脑白质病变 细胞图象 图元模型 马尔可夫场 Image Segmentation Medical Image Analysis White Matter Lesions Cell Image Segmentation Pixon Markov Random Field
其他题名Image Segmentation
学位专业模式识别与智能系统
中文摘要图象分割就是把图象空间划分成若干个具有某些一致性属性的不重叠区域。它是图象 分析与理解的基础,是计算机视觉领域中最基本最困难的问题之一。这是因为至今没有一 种方法适合所有分割问题,不同的问题必需寻找不同的方法。本文对三类不同的问题:一 般图象分割理论、脑白质病变核磁图象、细胞显微图象的分割进行了深入的研究,并对于 这三类不同的问题分别提出不同的解决方法。本文的贡献如下 .提出了一种基于马尔可夫场和图元模型的图象分割方法。给出了一种更适合图象分 割的图元模型的定义方式。在该方法中,利用马尔可夫场为分割图象建模。图元模 型的引入,为图象建立了一个简洁的模型,从而在保持分割质量的同时,大大的减 少了计算量。 .在核磁共振图象分析中,提出了一种实用、有效的脑白质病变分割方法。在老年人 的核磁共振图象中,经常发现白质异常,这些异常是由微小血管疾病(例如,高血 压、糖尿病)引起。精确地分割这些白质病变,研究其与老年人认知缺陷的关系, 对于提高老年人的生活质量有重要意义。在病变分割领域,目前,存在两类方法, 一类是基于多通道图象的,由于利用了较多的信息,这类方法可以取得较好的结 果,但是该类方法假设不同通道的图象具有相同的分辨率,在实际应用中,这往往 是无法满足的。另一类方法是仅仅基于单通道图象的,由于在单通道图象中,仅仅 依靠灰度信息,痫变小能很好地与其它正常组织分割开,所以效果不理想。我们提 出了一种基于T1加权象和T2加权象的脑白质病变分割方法,尽管我们的方法也是基 于多通道图象的,但是我们不假设不同的通道具有相同的分辨率(通常,与T1加权 象相比,T2加权象所具有的层片要少得多)。我们的算法包括以下三步:1)T1加 权象和T2加权象的配准,通过配准得到与T2加权象相对应的T1加权象:2)利用基 于多通道的方法分割那些既具有T1加权象也具有T2加权象层片中的病变:3)利用 形变模型处理那没有对应T2加权象的T1加权象层片,在这一步中,已经分割出的 病变为相邻层片上的病变分割提供位置和形状信息。 .提出了一种基于Polya传染病模型的脑组织分割方法。利用Polya传染病模型为不同 象索所包含的各种脑组织的构成比例的连续性建模。 .在细胞图琢分割中,针对一类具有类似椭圆边界的人体细胞,我们提出了一种基于 椭圆轮廓模型和动态聚
英文摘要Image segmentation is a process of separating an image into several disjoint regions, whose characteristics such as intensity, color,texture etc., are similar. Image segmentation is a very difficult and problem specific. There is no universal method to solve this problem. In this disseration, we take three typic problems: general image segmentation, white matter lesion segmentation from volumetric MR images, and cell image segmentation as our research topics. Main contributions in this paper can be summarized as follows. We proposed a novel pixon-based adaptive scale method for image segmenta- tion. The key idea of our approach is that a pixon-based image model is combined with a Marker random field model under a Bayesian framework. In our method, we introduce a new pixon scheme that is more suitable for image segmentation than the "fuzzy" pixon scheme. The anisotropic diffusion equation is successfully used to form pixons in our new pixon scheme. White matter lesions are common pathological findings in MR tomograms of elderly subjects. These lesions are typically caused by small vessel diseases (e.g., due to hypertension, diabetes). We introduce an automatic algorithm for seg- mentation of white matter lesions from volumetric MR images. In the literature, there are methods based on multi-channel MR images, which obtain good results. But they assume that the different channel images have same resolution, which is often not available. Although our method is also based on T1 and T2 weighted MR images, we do not assume that they have the same resolution (Generally, the T2 volume has much less slices than the T1 volume). Our rnethod can be sun- marized as the following three steps: l) Register the T1 image volume and the T2 image volume to find the T1 slices corresponding to those in the T2 volume; 2) Based on the T1 and T2 image slices, lesions in these slices are segmented: 3) Use deformable models to segment lesion boundarics in those T1 slices, which do not have corresponding T2 slices. About cell image segmentation, we propose a novel approach by combin- ing kernel-based dynamic clustering and Ellipsoidal Cell Shape Model. A priori knowledge about cell shape is incorporated in our method. That is, an elliptical cell contour model is introduced to describe the, boundary of the cell. Our method consists of the following components: (1) obtain the gradient image; (2) use the gradient image to get, the image points, which possibly belong to each cell boundary; (3) adjust the parameters of the elliptical cell boundary model to match the cell contour
语种中文
其他标识符753
源URL[http://ir.ia.ac.cn/handle/173211/5776]  
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
杨发国. 图象分割技术研究[D]. 中国科学院自动化研究所. 中国科学院研究生院. 2003.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。