中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于概念网络的汉语问答技术研究

文献类型:学位论文

作者任禾
学位类别工学博士
答辩日期2007-06-18
授予单位中国科学院研究生院
授予地点中国科学院自动化研究所
导师杨一平
关键词概念网络 问答系统 汉语信息处理 语义理解 conceptual network question answering system Chinese information processing semantic understanding
其他题名Research on Chinese Question Answering Technologies based on Conceptual Network
学位专业计算机应用技术
中文摘要自1950年图灵测试提出以来,问答系统一直是人工智能领域研究的重要课题之一。相对于英文问答系统的迅速发展以及语义信息处理技术的广泛应用,目前语义分析的方法在汉语问答系统中的应用还不多。因此,本文主要从语义分析的角度,采用一种新的知识表达体系——概念网络,来对问答系统的各个环节展开研究。本文的工作主要有以下几部分: 第一,对概念语义复合的形式化做了进一步的工作。本文在前人工作的基础上,提出了串概念、λ表达式、语义模板和语义情境等语义表示方法。 第二,设计了层次概念复合算法,通过层层概念复合,最后用一个大的语义结构来表达句子的语义。 第三,通过构建数据描述概念,将问句的语义匹配过程和回答信息的抽取过程独立开来,从而使问句的语义匹配方法不仅仅适用于限定领域问答系统。 第四,设计了汉语疑问代词概念模型,并利用它来确定汉语特指问的疑问焦点。 最后,设计了基于概念网络的汉语回答的生成方法。我们主要借鉴前人的工作,采用管道型结构,分别对文本规划,句子规划和语法实现三个阶段建模,充分发挥概念网络语义表达的优势,最终将回答信息用比较自然的方式表达出来。
英文摘要Since turing testing came up in 1950, question answering system has always been one of the hot topics in artificial intelligence field. Compared with the rapid development of English question answering systems in which semantic processing has been largely used, Chinese question answering systems have much a little use of semantic processing. Therefore, this thesis is mainly from the perspective of semantic processing to solve the problems of question answering. A new kind of knowledge representation method, conceptual network, is adopted, based on which we carry out studies for each parts of the question answering system. The work mainly consists of the following aspects: First, further works has been done on the formalization of semantic compounding of concepts. Based on the previous works, several semantic representation methods are proposed, such as serious concept, λ expression, semantic pattern and semantic scene. Second, we have designed a concept compound algorithm to express the meaning of natural language sentences with a large semantic structure. Third, semantic matching and answer extraction are made independent by constructing data description concepts. This makes the semantic matching method can be used more widely. Fourth, Chinese interrogative concept model is built,and then an algorithm is designed to compute the references of interrogative concepts. Finally, an answer generation method based on conceptual network is developed. In virtue of predecessors’ work, we use the pipeline structure to model the text planning、sentence planning and grammar realizing, respectively. It takes good advantage of the conceptual network, and can express the answer in a natural way.
语种中文
其他标识符200418014690004
源URL[http://ir.ia.ac.cn/handle/173211/6022]  
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
任禾. 基于概念网络的汉语问答技术研究[D]. 中国科学院自动化研究所. 中国科学院研究生院. 2007.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。