中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
自然场景图像语义识别及标注算法研究

文献类型:学位论文

作者江爱文
学位类别工学博士
答辩日期2010-05-29
授予单位中国科学院研究生院
授予地点中国科学院自动化研究所
导师王春恒
关键词自然场景图像语义分类 视觉目标类识别 图像多标签标注 基于内容的图像检索 图像理解 Natural scene image semantic classification visual object classes categorization multi-label image annotation content based image retrieval image understanding
其他题名Natural Scene Semantic Recognition and Annotation for Image Retrieval
学位专业模式识别与智能系统
中文摘要本论文围绕图像理解与检索的三个重要子课题:自然场景图像的语义分类、视觉目标类识别算法、多标签图像标注算法展开研究。主要内容包括: 1、逐步深入、循序渐进地提出了两种场景图像特征抽取及建模框架。基于Global Gist + Local Topic的场景模型,以认知心理学的相关研究为出发点,兼顾考虑了全局结构性信息和局部话题分布信息,对图像内容进行建模;基于GaborSIFT+NNScSPM的图像抽取算法,有机结合了HMAX思想和非负稀疏编码思想,较为合理地模拟了生物视觉处理的过程。合理借鉴生物机制指导计算机视觉进行特征抽取算法研究,是一个非常有吸引力的研究方向。我们的工作可以为此提供有意义的参考。 2、 在视觉目标类识别研究中,本文提出一种基于互补信息的特征点集融合策略,可以实现使用较为单一的局部特征,就可以达到同期相当的性能。对于实现充分挖掘同一种特征的信息,具有一定的参考意义。 3、针对多标签图像标注问题,提出了一种多标签分类与排序的改进算法。通过引入所谓的“虚拟标签”作为基准标签,对经典的RankSVM算法进行改进,将多标签的分类和排序问题有机融合到算法的统一优化过程,从而算法非常自然地、较好地解决了图像多标签标注问题,有效地弥补了传统RankSVM的重要缺陷。
英文摘要In this thesis, we concentrate the research on three subtopics of image understanding and retrieval: natural image semantic classification, visual object categorization, multi-label image annotation. The main contributions include: First, we have proposed two kinds of image feature extraction and modeling frameworks. The scene model based on “Global Gist + Local Topic” has considered both the global structural visual information and local topic distribution information, borrowing some research work in cognitive psychology. Image feature extraction method based on “GaborSIFT + NNScSPM”, try to combine HMAX model and non-negative sparse coding to mimic the information process in V1 area in visual cortex. Biological inspired feature extraction scheme has been demonstrated to be very attractive in computer vision. And our work can provide some reference value for deeper research. Second, in visual object categorization, we have suggested a complementary information fusion strategy for local feature set. For one simple feature set, we suggest to use two representations: traditional bag of features and fisher score representation to make full use of complementary information. Third, we have proposed an improved version of the famous algorithm-RankSVM, named Calibrated RankSVM for multi-label ranking and classification, through incorporating a "virtual label" as a calibration, which acts as a natural zero point to split label set into relevant and irrelevant labels. Multi-label classification and ranking are holistically fused into one optimal problem, which can improve the classification performance while preserve the ranking performance of traditional RankSVM.
语种中文
其他标识符200718014628039
源URL[http://ir.ia.ac.cn/handle/173211/6257]  
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
江爱文. 自然场景图像语义识别及标注算法研究[D]. 中国科学院自动化研究所. 中国科学院研究生院. 2010.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。