中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于脑图像的分割与分类方法研究

文献类型:学位论文

作者郝永富
学位类别工学博士
答辩日期2012-12-01
授予单位中国科学院大学
授予地点中国科学院自动化研究所
导师蒋田仔 ; 范勇
关键词图像分割 图像分类 磁共振 多图谱分割 元学习 Image segmentation classifiation MRI Multi-atlas based segmentation meta-learning
其他题名Research on Segmentation and Classification Methods for Brain Images
学位专业模式识别与智能系统
中文摘要 在利用图像进行疾病针对的研究中,不同的研究选择利用了不同的图像模态,不同的特征提取和选择方法,不同的分类器进行试验。针对现有的方法集中在对不同模态的图像在特征水平上进行拼接和提高所用特征的多样性上,而实际上不同的分类器也对分类效果提供了互补的信息的观察。我们设计了一种基于元学习的方法在分类器的水平上进行分类。通过结合基于装袋堆叠(Bagging of Stacking)的投射算法和K近邻(KNN),我们的方法同时考虑了图像模态,特征和分类器的多样性。更重要的是,由于我们的方法实现了方法和底层特征之间的分离,现有的各种方法都可以扩展到我们的分类框架中。基于老年痴呆病人图像分类试验展示了我们算法的有效性。
英文摘要 For medical image classification, the classification methods have been built on a variety of features extracted from data of multiple imaging modalities with different classification techniques. we proposed a meta-learning strategy for fusing multiple AD classifiers, referred to as base classifiers, which might be built on image features in different representations from data of diverse imaging modalities with various classification techniques. Instead of directly combining base classifiers, we extract discriminative features from images by mapping image features in different representations adopted in base classifiers with bagging-of-stacking projections (BSPs). Each of BSPs is essentially an overfitting-resistant stacking classifier of base classifiers built on bagging training samples. Built on the discriminative features extracted by BSPs, a k-nearest neighbor (KNN) classifier has demonstrated promising classification performance in AD classification.
语种中文
其他标识符200918014628025
源URL[http://ir.ia.ac.cn/handle/173211/6486]  
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
郝永富. 基于脑图像的分割与分类方法研究[D]. 中国科学院自动化研究所. 中国科学院大学. 2012.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。