中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A new fixed-point algorithm for independent component analysis

文献类型:期刊论文

作者Shi, ZW; Tang, HW; Tang, YY
刊名NEUROCOMPUTING
出版日期2004
卷号56页码:467-473
关键词independent component analysis blind source separation fixed-point algorithm
ISSN号0925-2312
英文摘要A new fixed-point algorithm for independent component analysis (ICA) is presented that is able blindly to separate mixed signals with sub- and super-Gaussian source distributions. The new fixed-point algorithm maximizes the likelihood of the ICA model under the constraint of decorrelation and uses the method of Lee et al. (Neural Comput. 11(2) (1999) 417) to switch between sub- and super-Gaussian regimes. The new fixed-point algorithm maximizes the likelihood very fast and reliably. The validity of this algorithm is confirmed by the simulations and experimental results. (C) 2003 Elsevier B.V. All rights reserved.
收录类别SCI
语种英语
WOS记录号WOS:000188597300029
源URL[http://ir.psych.ac.cn/handle/311026/13903]  
专题心理研究所_中国科学院心理研究所回溯数据库(1956-2010)
作者单位1.Dalian Univ Technol, Inst Neuroinformat, Dalian 116023, Peoples R China
2.Chinese Acad Sci, Lab Visual Informat Proc, Beijing 100101, Peoples R China
3.Chinese Acad Sci, Key Lab Mental Hlth, Beijing 100101, Peoples R China
4.Dalian Univ Technol, Inst Computat Biol & Bioinformat, Dalian 116023, Peoples R China
推荐引用方式
GB/T 7714
Shi, ZW,Tang, HW,Tang, YY. A new fixed-point algorithm for independent component analysis[J]. NEUROCOMPUTING,2004,56:467-473.
APA Shi, ZW,Tang, HW,&Tang, YY.(2004).A new fixed-point algorithm for independent component analysis.NEUROCOMPUTING,56,467-473.
MLA Shi, ZW,et al."A new fixed-point algorithm for independent component analysis".NEUROCOMPUTING 56(2004):467-473.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。