中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Error Bounds of Adaptive Dynamic Programming Algorithms for Solving Undiscounted Optimal Control Problems

文献类型:期刊论文

作者Liu, Derong; Li, Hongliang; Wang, Ding
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
出版日期2015-06-01
卷号26期号:6页码:1323-1334
关键词Adaptive critic designs adaptive dynamic programming (ADP) approximate dynamic programming neural networks neurodynamic programming nonlinear systems optimal control
英文摘要In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
研究领域[WOS]Computer Science ; Engineering
关键词[WOS]TIME NONLINEAR-SYSTEMS ; MARKOV DECISION-PROCESSES ; OPTIMAL TRACKING CONTROL ; ZERO-SUM GAMES ; POLICY ITERATION ; LAPLACIAN FRAMEWORK ; UNKNOWN DYNAMICS ; FEEDBACK-CONTROL ; CONTROL SCHEME ; HJB SOLUTION
收录类别SCI
语种英语
WOS记录号WOS:000354957000017
公开日期2015-09-22
源URL[http://ir.ia.ac.cn/handle/173211/7924]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
作者单位Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Derong,Li, Hongliang,Wang, Ding. Error Bounds of Adaptive Dynamic Programming Algorithms for Solving Undiscounted Optimal Control Problems[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2015,26(6):1323-1334.
APA Liu, Derong,Li, Hongliang,&Wang, Ding.(2015).Error Bounds of Adaptive Dynamic Programming Algorithms for Solving Undiscounted Optimal Control Problems.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,26(6),1323-1334.
MLA Liu, Derong,et al."Error Bounds of Adaptive Dynamic Programming Algorithms for Solving Undiscounted Optimal Control Problems".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 26.6(2015):1323-1334.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。