Global Coupled Learning and Local Consistencies Ensuring for sparse-based tracking
文献类型:期刊论文
作者 | Yang, Yehui1![]() ![]() ![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2015-07-21 |
卷号 | 160页码:191-205 |
关键词 | Visual tracking Sparse representation Dictionary learning Coupled learning Consistency ensuring |
英文摘要 | This paper presents a robust tracking algorithm by sparsely representing the object at both global and local levels. Accordingly, the algorithm is constructed by two complementary parts: Global Coupled Learning (GCL) part and Local Consistencies Ensuring (LCE) part. The global part is a discriminative model which aims to utilize the holistic features of the object via an over-complete global dictionary and classifier, and the dictionary and classifier are coupled learning to construct an adaptive GCL part. While in LCE part, we explore the object's local features by sparsely coding the object patches via a local dictionary, then both temporal and spatial consistencies of the local patches are ensured to refine the tracking results. Moreover, the GCL and LCE parts are integrated into a Bayesian framework for constructing the final tracker. Experiments on fifteen benchmark challenging sequences demonstrate that the proposed algorithm has more effectiveness and robustness than the alternative ten state-of-the-art trackers. (C) 2015 Elsevier B.V. All rights reserved. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence |
研究领域[WOS] | Computer Science |
关键词[WOS] | ROBUST VISUAL TRACKING ; APPEARANCE MODEL ; OBJECT TRACKING ; REPRESENTATION ; REGRESSION |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000354139100017 |
公开日期 | 2015-09-22 |
源URL | [http://ir.ia.ac.cn/handle/173211/8073] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Karamay Hongyou Software CO LTD, Karamay 834000, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Yehui,Xie, Yuan,Zhang, Wensheng,et al. Global Coupled Learning and Local Consistencies Ensuring for sparse-based tracking[J]. NEUROCOMPUTING,2015,160:191-205. |
APA | Yang, Yehui,Xie, Yuan,Zhang, Wensheng,Hu, Wenrui,&Tan, Yuanhua.(2015).Global Coupled Learning and Local Consistencies Ensuring for sparse-based tracking.NEUROCOMPUTING,160,191-205. |
MLA | Yang, Yehui,et al."Global Coupled Learning and Local Consistencies Ensuring for sparse-based tracking".NEUROCOMPUTING 160(2015):191-205. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。