中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An identifying function approach for determining parameter structure of statistical learning machines

文献类型:期刊论文

作者Ran, Zhi-Yong1; Hu, Bao-Gang2,3
刊名NEUROCOMPUTING
出版日期2015-08-25
卷号162页码:209-217
关键词Identifying function Structural identifiability Statistical learning machine Kullback-Leibler divergence Parameter redundancy Reparameterization
英文摘要This paper presents an identifying function (IF) approach for determining parameter structure of statistical learning machines (SLMs). This involves studying three related aspects: structural identifiability (SI), parameter redundancy (PR) and reparameterization. Firstly, by employing the Rank Theorem in Riemann geometry, we derive an efficient identifiability criterion by calculating the rank of the derivative matrix (DM) of IF. Secondly, we extend the previous concept of IF to local IF (LIF) for examining local parameter structure of SLMs, and prove that the Kullback-Leibler divergence (KLD) is such a proper LIF, thus relating the LIF approach to several existing criteria. Lastly, an analytical approach for solving minimal reparameterization in parameter-redundant models is established. The dimensionality of the minimal reparameterization can be used to characterize the intrinsic parameter dimensionality of model. We compare the IF approach with existing criteria and discuss its pros/cons from theoretical and application viewpoints. Several model examples from the literature are presented to study their parameter structure. (C) 2015 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]NEURAL-NETWORK MODEL ; INFORMATION CRITERION ; IDENTIFIABILITY ; IDENTIFICATION
收录类别SCI
语种英语
WOS记录号WOS:000356125200021
公开日期2015-09-22
源URL[http://ir.ia.ac.cn/handle/173211/7936]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
作者单位1.Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
2.Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Automat, LIAMA, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Ran, Zhi-Yong,Hu, Bao-Gang. An identifying function approach for determining parameter structure of statistical learning machines[J]. NEUROCOMPUTING,2015,162:209-217.
APA Ran, Zhi-Yong,&Hu, Bao-Gang.(2015).An identifying function approach for determining parameter structure of statistical learning machines.NEUROCOMPUTING,162,209-217.
MLA Ran, Zhi-Yong,et al."An identifying function approach for determining parameter structure of statistical learning machines".NEUROCOMPUTING 162(2015):209-217.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。