Learning Feature Hierarchies: A Layer-Wise Tag-Embedded Approach
文献类型:期刊论文
作者 | Yuan, Zhaoquan1; Xu, Changsheng1![]() ![]() |
刊名 | IEEE TRANSACTIONS ON MULTIMEDIA
![]() |
出版日期 | 2015-06-01 |
卷号 | 17期号:6页码:816-827 |
关键词 | Auto-encoder deep learning hierarchical feature learning social tags |
英文摘要 | Feature representation learning is an important and fundamental task in multimedia and pattern recognition research. In this paper, we propose a novel framework to explore the hierarchical structure inside the images from the perspective of feature representation learning, which is applied to hierarchical image annotation. Different from the current trend in multimedia analysis of using pre-defined features or focusing on the end-task "flat" representation, we propose a novel layer-wise tag-embedded deep learning (LTDL) model to learn hierarchical features which correspond to hierarchical semantic structures in the tag hierarchy. Unlike most existing deep learning models, LTDL utilizes both the visual content of the image and the hierarchical information of associated social tags. In the training stage, the two kinds of information are fused in a bottom-up way. Supervised training and multi-modal fusion alternate in a layer-wise way to learn feature hierarchies. To validate the effectiveness of LTDL, we conduct extensive experiments for hierarchical image annotation on a large-scale public dataset. Experimental results show that the proposed LTDL can learn representative features with improved performances. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications |
研究领域[WOS] | Computer Science ; Telecommunications |
关键词[WOS] | CLASSIFICATION ; MULTIMEDIA ; MODELS ; REPRESENTATION ; RECOGNITION ; DICTIONARY ; MULTIPLE ; DATABASE |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000354527500005 |
公开日期 | 2015-09-22 |
源URL | [http://ir.ia.ac.cn/handle/173211/8079] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 2.Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119077, Singapore 3.King Saud Univ, SWE Dept, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia |
推荐引用方式 GB/T 7714 | Yuan, Zhaoquan,Xu, Changsheng,Sang, Jitao,et al. Learning Feature Hierarchies: A Layer-Wise Tag-Embedded Approach[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2015,17(6):816-827. |
APA | Yuan, Zhaoquan,Xu, Changsheng,Sang, Jitao,Yan, Shuicheng,&Hossain, M. Shamim.(2015).Learning Feature Hierarchies: A Layer-Wise Tag-Embedded Approach.IEEE TRANSACTIONS ON MULTIMEDIA,17(6),816-827. |
MLA | Yuan, Zhaoquan,et al."Learning Feature Hierarchies: A Layer-Wise Tag-Embedded Approach".IEEE TRANSACTIONS ON MULTIMEDIA 17.6(2015):816-827. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。